青野の卒論日誌

2023年

進捗報告

2/22 毎日追われるように解析と修正の繰り返しの日々だったが、無事卒論発表を終えることができた。 wikiの更新が全然できてなくて結果ばかりになってしまったが、できる限りわかりやすくまとめ直していこうと思う。

(覚えている範囲の手直しなので間違いが出るかも もっとノートとかwikiを真面目に書いておくんだった)

12/22 とりあえず中間発表終了

12/20 中間発表用のLaTeXとスライドの作成

12/13 データまとめはとりあえず終わったが決定係数\( R^2 \)とは何なのだろうか。そこら辺を調べつつ中間発表に向けて準備を進めていく。

12/6 自分のパソコンだと解析に3週間程度かかるので及川さんのパソコンで解析を回しつつASTERCODEの作成とデータまとめをしていく

11/29 解析は終わっていたが間違えて1次要素でやっていた。2次要素で解析をやり直しているが長い。これからはミスできない解析になってきたようだ。

11/22 かじか橋のアーチ部分に異方性用のBOX作成完了。 AsterStudyの変更も多分完了したので今日解析して帰って金曜日までに終わっていることを願う

11/15 青山さんの論文を読んだのでこれからアーチに異方性を適用できるように頑張る

11/8 ワクチンによる体調不良

11/1 ウォルトキングの論文を梁要素で再現してみた

10/25 ウォルトキングの論文を一通り読み終えた

10/18 理論値と大きく離れたので論文を頑張って翻訳中

10/11 ウォルトキングの理論値関連

東北支部後

とりあえずねじれが卓越した原因がせん断弾性係数Gの影響だったのかGの値を変えながら感度解析してみるか?(今は異方性だと\( G = \frac{E}{15} \)、等方性だと大体\( G= \frac{E}{3} \)

最初の解析は\( G= \frac{E}{10} \)とかで作ってやってみるとか?(3/5 10:51start 3/6 16:23end) 上が\( G = \frac{E}{10} \) 下が\( G = \frac{E}{15} \)

3/8 思ったより差が出なかったので\( G = \frac{E}{5} \) 下が\( G = \frac{E}{7} \)も作ってやってみる。(アーチのGしか変えていないのが原因なのか?)

3/11 salomeが落ちてた… 何も結果は出てないし、どこで終わったのかもわからないので今まで通りやるしかない(120個の結果を一気に得ようとして失敗)

3/15 とりあえずでやったものが下のグラフだが、Gを変えたのが床版以外だからこうなったのか? 床版もGを同じで変えてみるしかない

3/18 床版も全てのGを同じ倍率で変えてみたら下のグラフのようなグラフが得られた。自分的には\( G=\frac{E}{15} \)から等方性(\( G=\frac{E}{3} \))にかけて徐々に落ちていくと思っていたが、何故か増えた。 原因を探さなきゃ… 

3/25 とりあえず全データを取り終えた。傾きはせん断弾性係数を大きくしたほうが大きくなっているが、他の振動モードとねじれモードの比率を見るとねじれが卓越しているのはせん断弾性係数が小さいほうが卓越したのでねじれモードが卓越したのはせん断弾性係数の影響なのではないかと考えられる。

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_Ghenkou.png

アーチだけ取り出して今は15BOXでアーチの角度変えているけどもっとすくないBOX数でも問題ないとかの検討もする必要あるのかな?

卒論関連

振動解析(青山さん、七五三さんの続き) 不朽箇所1箇所ごとの感度は青山さんの手法で調べられるのだけど、それらの組み合わせの影響を何らかの統計的な手法(ベイズ推定とか)で評価できないかとか。

参考: 経年による木製アーチ道路橋(かじか橋)の構造性能と健全度調査

fitting

ヤング率の減少のみで逆対象1次を測定値8.69Hzに合わせた場合

固有振動数(Hz)水平1次モード鉛直逆対称1次モードねじれ逆対称1次モード鉛直対称1次モード
アーチ異方性6.015108.695519.4516713.8143
測定値(2019)2.738.6910.6415.38
アーチ等方性6.641658.6948812.367414.9576

ねじれが10.64Hzに合ってくれたらうれしい

等方性だと振動数が高く、異方性だと振動数が低い

ねじれの誤差

アーチ等方性 16.23%

アーチ異方性 12.57%

振動数の変化

床版は異方性を適用済み

腐朽なしのときの固有振動数

固有振動数(Hz)水平1次モード鉛直逆対称1次モードねじれ逆対称1次モード鉛直対称1次モード
アーチ等方性9.4471812.997818.499421.5656
アーチ異方性9.1777612.370715.786118.2731
全体異方性7.5678211.130613.072717.5401

各状態からの減少率

減少率(%)水平1次モード鉛直逆対称1次モードねじれ逆対称1次モード鉛直対称1次モード
アーチ等方性→アーチ異方性2.854.8214.6715.27
アーチ等方性→全体異方性19.8914.3729.3318.67
アーチ異方性→全体異方性17.5410.0217.194.01

ねじり剛性とは、\( K = G \times J \)

Kがねじり剛性、Gは材料のせん断弾性係数、Jがサン・ブナンのねじり定数

\( G = \frac{E}{2 \times (1 + \nu )} \)

\( \nu \) はポアソン比

かじか橋の感度解析

アーチに異方性を適用して振動解析を行った。アーチが腐朽していくパターンと桁が腐朽していくパターン

感度やり直し

アーチ部分のA1〜A5までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_zenbuihou_1-03_arch.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_touhou_1-03_arch.png

桁部分のC1〜C4までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_zenbuihou_1-03_keta.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_touhou_1-03_keta.png

かじか橋を全部異方性にした場合

アーチ部分のA1〜A5までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_arch_zenbuihou.png

桁部分のC1〜C4までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_keta_zenbuihou.png

感度解析結果

腐朽箇所

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kajika_fukyuukasyo.png

アーチ部分のA1〜A5までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kanndo_arch.png

桁部分のC1〜C4までを腐朽させていったときの線形回帰の傾き

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_keta.png

縦軸:固有振動数(Hz)、横軸:ヤング率の残存率

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kajika_A1_gyakutaisyou.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kajika_A2_gyakutaisyou1.png

及川さんの英語論文より5%程度固有振動数が減少したかな?

決定係数\( R^2 \)は、数値予測のモデルの良さを測る指標の一つ。高ければ高いほどよく、最良の場合 1 になる。評価用データに含まれる正解の値と、予測モデルが予測した値との間にどれくらい相関があるかを確認するために用いられる。

アーチの固有振動数

ウォルトキングの理論値

論文を読んでからやり直し

(E=9.6*10^9N/m^2 , b=0.1m , h=0.65m ,RHO=459Kg/m^3 ,弧長\( \ell \)=16m , 矢高f=2m)

\( f/\ell \)=1/8対称1次対称2次逆対称1次逆対称2次
解析値(Hz)34.424548.166618.282376.3628
理論値(Hz)40.012117.36918.672477.3571
誤差(%)13.9658.962.091.28

(E=9.6*10^9N/m^2 , b=0.1m , h=0.65m ,RHO=459Kg/m^3 ,弧長\( \ell \)=15m , 矢高f=3m)

\( f/\ell \)=1/5対称1次対称2次逆対称1次逆対称2次
解析値(Hz)36.334665.001716.002171.0228
理論値(Hz)37.881111.08115.66571.206
誤差(%)4.0841.482.150.26

(E=9.6*10^9N/m^2 , b=0.1m , h=0.61m ,RHO=459Kg/m^3 ,弧長\( \ell \)=16m , 矢高f=1m)

\( f/\ell \)=1/16対称1次対称2次逆対称1次逆対称2次
解析値(Hz)20.521146.805720.305482.1309
理論値(Hz)44.014117.36918.67282.692
誤差(%)53.3860.128.750.68

対称2次は全部上手く行ってないが、その他のモードに関しては上手くいっているのではないかと思う。 特に逆対称2次に関しては誤差がかなり小さい解析ができている。誤差が小さいときにはウォルトキングの論文にあったモード(P18)と同じ振動をしていたのでsalomeでも上手く再現できることがわかった。梁要素で成功したので次はsolidで解析して異方性の適応まで行う。(メモ:細長比や断面積を注意しないと上手く行かない可能性大)

load1 = AFFE_CHAR_MECA(DDL_IMPO=(_F(DRX=0.0,
                                   DRZ=0.0,
                                   DX=0.0,
                                   DY=0.0,
                                   DZ=0.0,
                                   GROUP_NO=('koteiL', )),
                                _F(DRX=0.0,
                                   DRZ=0.0,
                                   DX=0.0,
                                   DY=0.0,
                                   DZ=0.0,
                                   GROUP_NO=('koteiR', ))),
                      MODELE=model)

構造力学集P269にあるウォルトキング(waltking)の円弧2ヒンジアーチの振動数に関する図から固有振動数を求める。 解析は梁要素で確認を行った。(E=9.6*10^9N/m^2 , b=0.625m , h=0.16m ,RHO=459Kg/m^3 ,弧長=16m , 矢高=2m)

f/l=1/8対称1次対称2次逆対称1次逆対称2次
解析値(Hz)4.4645411.79344.5359618.9013
理論値(Hz)9.8491828.89094.5962919.0417
誤差(%)54.6759.181.310.74

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/walt_T1.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/walt_T2.png

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/walt_G1.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/walt_G2.png

かじか橋

異方性の確認

直線梁を作成して等方性と異方性の振動の違いを確認。

B=10mm,H=5mm,L=500,RHO=4.59/mm^3,E=9600N/mm^2,NU=0.4 メッシュは2次要素でやればそんなに振動数が変わらないのでメッシュ1で確認する。

鉛直1次鉛直2次水平1次水平2次
等方性(Hz)41.4685165.79482.8916330.865
異方性(Hz)41.4215165.04682.5045328.842
等方性と異方性の差(%)0.110.450.470.61

アーチ部分に異方性を入れる

かじか橋をやるということで5本のアーチでやっていたが、アーチへの異方性の適用を確認するためにはアーチ一本で確認するほうがいいと思うのでその方向で進んでみる。(6/28)

とりあえず単純梁を作成して異方性にした際の振動数の減少を確認する。(7/18〜8/2まで取っていたデータは固定方法を間違っていたためやり直し)(8/3)

等方性の鉛直振動は固定の仕方を間違っていたのでやり直し(8/4)

全データ取り終わり。等方性より異方性のほうが振動数が減少することが確認できた。2次要素だと理論値を下回る結果だが異方性のほうが振動数が減少する傾向は同じ。 次はアーチを作成して同じようになるのかを確認。(8/9)

アーチにオイラー角を用いて振動解析してみた。等方性だと鉛直1次が3101.59Hzに対して異方性を与えると3068.31Hzと少し減少したが理論値等を求めていないのでそもそもあっているかわからない。理論値を探してみて確認したほうが良さそう。(8/17)

とりあえずアーチのみのデータは取り終わった。1次要素・2次要素ともにオイラー角を用いて異方性を適用すると、振動数が明確に落ちることが確認できた。また、振動をやるときには2次要素でやったほうが収束しているので2次要素での解析で要素数を少なくして解析したほうが解析時間も短くなるのでいい気がする。(今回のデータだと大体1~2Hzくらいしか変わっていないのでそこは無視してもいい気がする。)(8/25)

構造力学公式集にあった2ヒンジアーチの固有振動数の式から1次と2次の理論値の式の計算は終わった。計算量が多く、手計算でやったのでもう一度計算してあってるかの確認をしておく必要がある(一応単位計算したら合ってたので多分大丈夫だと思うが、念の為もう一度やる)。エクセルに計算式も一応作っておいたので間違いがなかったら理論値は簡単に計算できる(File:2hinjiarchriron)。ヒンジがよくわかっていないのでそこの勉強と設定方法の確認をして中間発表に間に合うか間に合わないか早めに決めておく。(9/5)(最近あまり休めていなかったので少し休みを入れていきます)

構造力学集にあったウォルトキングの図から振動数を求めたら対称1次振動で58.9Hzであったが、解析では1200Hzぐらいだったので大きく違う。理論値に入れる値が間違っているのか解析の設定が間違っているのか分からないのでようチェック。とりあえず他の文献も読みながら理論式を探して見ようと思う。(9/15)

参考

ここから下はアーチにオイラー角で異方性を15BOXで与えたときの記録(E=9.6GPa,RHO=4.59ton/mm^3, b=0.2mm, h=0.5mm) 

横軸:要素数 縦軸:振動数

鉛直1次振動 https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/archetyoku1ji.png

鉛直2次振動 https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/archentyoku2ji.png

水平1次振動 https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/archsuhei1ji.png

水平2次振動 https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/archsuihei2ji.png

ここから下は単純梁の記録(E=9.6GPa,RHO=4.59ton/mm^3, b=20mm, h=10mm, L=500mm)

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/1jiyousoentyoku1ji.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/1jiyousoentyoku2ji.png

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/2jiyousoentyoku1ji.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/2jiyousoentyoku2jir.png

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/1jiyousosuihei1ji.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/1jiyousosuihei2ji.png

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/2jiyousosuihei1ji.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/2jiyousosuihei2ji.png

縦軸:時間(分) 横軸:要素数

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/jikanyousosuu.png

縦軸:振動数 横軸:要素数

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/suihei1.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/ihousuihei1.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/touhousuihei1.png

  アーチは一つのものとして作成されているため、場所ごとにboxを作成して異方性を適用する。

  アーチを選択→点を作成(左から2番目のものを選ぶと角のものを選べる)→点を線でつなぎ4辺作成→フェースを作成で面を作成→partitionでアーチと面を選ぶ

  以上によって面で区切りとなってboxを作成することができる。

オイラー角

もしかしたら青山さんのモデルを異方性にしていくこともするかも(オイラー角をつかって?)

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/xyheimennanameoira-.png

Z軸回転のみ(部材がXY平面上にあるとき)のオイラー角の適用はできたのでアーチの異方性適用についてもこの方向でやっていく。

多分一つの回転のみなら簡単にできるのかもしれない

→x軸回転のみもできたのでZ軸またはX軸方向の回転はできる(y軸回転がないので少し不便だが、頑張ってZ,X軸で上手く回転させて適応させてみるしかないまたはy軸を回転するような部材を作成しないように頑張るしかないと思う)

追加

boxを斜め方向(どの平面にも触れないように)作成し、オイラー角がきちんとできるのかも確認する。急ぎではないが早めにやる。

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/nanameoira-.png

片持ち梁を上の図のように作成して、曲げの応力-ひずみからヤング率を求めたところ完全に6000MPaと240MPaは得られなかったものの、6050MPaや245MPa付近で値を得られたのでオイラー角はうまく適応できたと考えられる。

オイラー角の回転はZ軸→X’軸→Z’’軸の順番に行っていることに注意して与える必要がある(salomeだと0→Z軸、1→X’軸、2→Z''軸の順番)

オイラー角:座標軸で回転させて向かせたい方向に回転させる。その時の角度をオイラー角と呼ぶ。

x軸を回転させる:φ角

y軸を回転させる:θ角

z軸を回転させる:ψ角

(飛行機の場合、上からバンク角、ピッチ角、機首方位角と呼ばれている)

回転させる時、原点から軸の正方向を見て右回転させていく。

片持梁の曲げで確認
応力とひずみからヤング率を計算したところ、軸方向ヤング率6000MPaに対してオイラー角を設定すると軸方向ヤング率240MPaを得ることができたので上手く設定できたと考えられる。

アーチを作成して適用してみる。

密度による影響

3分割で試し

最初の名前が表面の状態

数字がモード(1:1次モード、2:2次モード)

e(鉛直)s(水平)方向

断面図↓

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/3bunkatudanmen.png

横軸:振動数 縦軸:中心の含水率

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/mitudohenka1entyoku.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/mitudohenka2entyoku.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/mitudohenka1suihei.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/mitudohenka2suihei.png

10分割含水率変化

気乾比重は、乾燥させたときの比重のため少し(含水率10%程度)の水分を含んでいる。

全乾比重は、完全に乾燥させたときの比重(含水率0%)となっている。

スギでモデル作成していく.10✕20✕1000をモデルとし、気乾比重を最低値として考える。(5/9)(自分用メモ:解析していったデータは10bunnkatu dataに理論値とかの計算はsinndourironnkeisannにある)

種類密度g/cm3
バルサ0.10
リグナムバイタ1.25
キリ0.23
アカガシ0.97
スギ0.34
ヒノキ0.42
ケヤキ0.66
ミズナラ0.70

振動解析

春休み課題(振動解析)

図心をZ軸に合わせて固定もZ軸上でのものとする(Boxの中心上にできるようにする)。そこから相対誤差がどのくらい変化するかの確認。(4/27)

追記:振動解析班のものは鉛直、水平のモードで分類してなかったので理論値計算を含めやり直す。(5/1)

相対誤差まで完成。ほとんど誤差のない結果となった。(5/2)

再解析データ

理論値

鉛直1次:36.036Hz 水平1次:72.073Hz 鉛直2次:144.146Hz 水平2次:288.292Hz

1次モード

メッシュの長さ鉛直1次モード相対誤差水平1次モード相対誤差
0.836.03070.015%72.02190.067%
0.936.03070.015%72.02190.067%
1.036.03070.015%72.02190.067%
2.036.03100.014%72.02240.066%
3.036.03080.014%72.02240.066%
4.036.03120.013%72.02260.066%
5.036.03130.013%72.02270.066%

2次モード

メッシュの長さ鉛直2次モード相対誤差水平2次モード相対誤差
0.8144.0530.065%287.4770.283%
0.9144.0530.065%287.4770.283%
1.0144.0530.065%287.4770.283%
2.0144.0580.061%287.4840.280%
3.0144.0550.063%287.4850.280%
4.0144.0600.060%287.4880.279%
5.0144.0620.058%287.4900.278%

振動解析班のデータ1次モード

メッシュの長さ要素数一次モードの固有振動数解析値相対誤差
0.825607736.01940.0294%
0.912808636.01940.0294%
1.08946236.01950.0291%
2.02107436.01960.0288%
3.02445736.01960.0288%
4.0547336.01990.0280%
5.0572536.020.0277%

振動解析班のデータ二次モード

メッシュの長さ要素数二次モードの固有振動数解析値相対誤差
0.8256077108.0674.03%
0.9128086108.1833.93%
1.089462108.3583.78%
2.021074109.1743.05%
3.024457109.0613.15%
4.05473109.9062.40%
5.05725110.0242.30%

ねじれの理論式 \( f= \frac{\lambda}{2\pi\ell}\times \sqrt{\frac{GJ}{\rho I_p}} \)

棒材の場合はJ=\( I_p \)であるため\( f= \frac{\lambda}{2\pi\ell}\times \sqrt{\frac{G}{\rho}} \)

参考文献

構造振動学(https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/jsme-or-jp.pdf )

固有振動数 理論式 日本機械学会のものが見当たらなくなったのでとりあえずおいておく

既存鋼鈑桁橋のモデルパラメータ事後分布を用いた信頼性評価

ベイズ推定による既存構造物数値モデルの不確定性定量化とキャリブレーション

読んでみたいもの

(Model Verification & Validation(V&V))

Alvin, K. F., Oberkampf, W. L, Dieger, K., Rutherford, B.:Uncertainty quantification in computational structural dynamics: a new paradigm for model validation, Society for Experimental Mechanics, Inc, 16 th International Modal Analysis Conference.. Vol. 2. 1998. (計算構造力学における不確かさの定量化:モデル検証のための新しいパラダイム、実験力学研究会、16th国際モード解析会議.   Vol.2. 1998.)

2022年

創造工房実習の内容

10月21日課題

タッチタイプ練習

11月4日

・課題

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/kadai.png

秋田市の月別平均気温(1991~2020)

・練習

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/bbb.png

11月11日 片持ち梁

メッシュの長さ要素数変位相対誤差計算者
0.5595046.56-1.5千代岡
0.6455126.48774-2.69高井
0.7390756.54133-2.0関合
0.8133976.43695-3.5岡田
0.999036.36315-4.6松田
1.262566.3043375-5.4青野
1.357676.29784-5.6山口
1.451996.29990-5.55山本
1.539356.24807-6.3進藤
1.634006.20446-6.98河合
1.829526.17161-7.5山口
216325.64585-15.3進藤
36825.47288-17.9山本
42643.6161-45.8関合
51913.86-42千代岡
61902.5077325-62.4高井
7751.41225-78.8青野
8561.2887175-80.7岡田
9491.28799-80.9松田
10441.226075-81.6河合

片持ち梁のグラフ:縦軸 変位 横軸 要素数

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/katamotibari2.png

11/18(金) 単純梁

メッシュ長さ要素数変位(mm)相対誤差(%)計算者
0.56041670.4289822.94千代岡
0.63615840.4212331.09高井
0.71452340.42251.4関合
0.81409870.4226273851.4岡田
0.9918570.4203516060.88松田
1.2245200.404744325-2.87青野
1.3231320.4045-2.93山口
1.4175300.3986-4.34山本
1.5154330.3963177567574.9進藤
1.6159000.399049-4.24河合
1.8116770.404457-0.03山口
2104600.394818715517-5.3進藤
323440.32447-22.13山本
414530.3329-20.1関合
54310.136240-67.3千代岡
63600.2130486-48.9高井
71960.1019892-75.5青野
81040.1158624-72.2岡田
9810.1247076-70.1松田
10780.07733-81.4河合

片持ち梁のグラフ:縦軸 変位 横軸 要素数

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/tanjunbari2.png

11月25日

等方性1次と等方性2次の比較

二次要素の等方性のデータ

メッシュ長さ要素数変位(mm)相対誤差(%)計算者
0.5604167--千代岡
0.62032090.423830.98高井
0.71452340.433013.22関合
0.81409870.430063.2岡田
0.9919740.4299133.18松田
1.2248000.4297773.14青野
1.3231320.429893.16山口
1.4176170.4297453.13山本
1.5154330.4298443.2進藤
1.6159000.4297543.13河合
1.8116770.429623.1山口
2104600.4296053.1進藤
324860.4292173.0山本
414530.42933.02関合
54310.4278852.69千代岡
63600.42822.78高井
71960.426062.25青野
81040.426312.3岡田
9810.425132.03松田
10780.4244661.8河合

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/kadai122.png

等方性1次と異方性1次の比較

異方性1次のデータ

メッシュ長さ要素数変位(mm)相対誤差(%)計算者
0.56041670.509193.56千代岡
0.62032090.504722.6高井
0.71452340.50362.42関合
0.81409870.502832.3岡田
0.9919740.500531.8松田
1.2248000.48739-0.9青野
1.3231320.48841-0.67山口
1.4176170.48403-1.56山本
1.5154330.48202-2.0進藤
1.6159000.48329-1.7河合
1.8116770.47855-2.67山口
2104600.47906-2.6進藤
324360.42787-12.98山本
414530.42772-13.02関合
54310.27364-44.3千代岡
63600.33927-31.0高井
71960.21363-58.5青野
81040.22574-54.1岡田
9810.22750-53.7松田
10780.20327-58.7河合

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/kadai1222.png

12/2 木材と鋼材の単純梁 サンドウィッチ

異方性の単純梁(1次)と2次要素のサンドウィッチ梁(鋼材:等方性 木材:異方性 木材を鋼材で挟む)の比較

コマンドファイル

メッシュ要素数変位相対誤差測定者
0.71552660.0861-13.0関合
0.81384530.08349-15.7岡田
0.9827660.083312-15.9松田
1.2322790.08357-15.6青野
1.3283430.083667-15.5山口
1.4236670.08368-15.5山本
1.5199580.083516-15.6進藤
1.6194510.086037-13.1河合
1.8109330.084021-15.1山口
2107640.083323-15.8進藤
336180.083467-15.7山本
416230.0852-13.9関合
510070.083104-16.1千代岡
68420.0821-17.1高井
75540.08075-18.4青野
82890.079715-19.5進藤
92610.078427-20.8松田
102320.082495-16.7河合

https://www.str.ce.akita-u.ac.jp/~gotouhan/j2022/aono/sandwich.png

<メモ>

UNIXコマンド

gnuplot

inkscape

LaTex

LibreOfficeImpress

Salome-Meca

[m]単位でモデリングするときは,密度の単位はkg/m3を用いる。

GenerateVectorsは2Dの結果を可視化するときに適用するものらしい。(別に入れても問題ないなら忘れないために常に入れておいたほうが安全だと思う)

Normalmodesanimationrealは鉛直or水平の振動を見ることができるもの?

Normalmodesanimationcomplexは鉛直・水平振動を同時に起こせるもの?

自分用メモ

POUTRE 梁(ビーム)

COQUE シェル

AXE_POUTRE ビーム軸

coq_pou このオプションにより、船体内に格子状の部品を梁状の部品と接続することが可能になります?(原文:This option makes it possible to connect a part with a grid in hull with a beam part.)

http://www-mdp.eng.cam.ac.uk/web/CD/engapps/aster_docs/UDocs-HTML/U44401i1/U44401i1.pdf.html#52(P52)

5/15~5/26 教育実習

5/29 研究再開

全角/半角の切り替えは、「無変換」(左手親指)でもできる

コピペは、左クリックで領域選択したら、スクロールボタンで貼り付け

単語選択は、ダブルクリックで可(トリプルクリックだと行選択)

学会メモ

東北支部(3/2)

初めての学会発表で東北支部(岩手大学)で発表したが、やっぱり質問対応が上手くいかない。 質問の意図が上手く汲み取れなくて違う回答をしたあとに質問内容を変えてもらってなんとか回答できるようになる。

相手の質問内容を上手く理解できるようになる必要がある。 また、他の人の発表が全然理解できなかったのでもっと理解できるよう幅広い知識と様々な試験方法を知っておく必要があると感じた。 https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_G10.png https://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/aono/wiki/kando_G15.png

1


トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-03-25 (月) 12:37:36