4年次

連絡

6月17日 キャンパスクリーンデー

7月2日 大館鳳鳴 午前中 

7月3日 13:00〜 宮地

7月27日 オープンキャンパス

卒論テーマ

耐候性鋼橋の耐候性鋼材の錆の現地調査(日本鉄鋼連盟、土木研究センター、東北の大学や高専の土木構造系研究室の共同研究) と何らかの定量化手法との比較を(人間の現場での評価を教師として)AIに機械学習させてみる。

(青木・後藤)(共同研究なので誰かやってほしい。何年かは続く見込み) 

現場デジカメ撮影の画像データ(伊藤さんの卒論2004:概要pdfスライドpdf

セロテープ試験の2値化データ(藤原さんの卒論2005:概要pdfスライドpdf

膜厚計の錆厚データ(橘さん2006:概要pdfスライドpdf

(現場で簡単なのはデジカメ、セロテープはややめんどう、膜圧はもっとめんどう)

中課題

2024/6/26までの課題

手書き文字判別までのプロセスを確定させる

2024/6/19までの課題

引き続き本で学習を進める 文字判別の仕組みを理解したい

あまり進捗なし

今度耐候性橋梁を見に行きたい

2024/6/12までの課題

千代岡さんから借りたpythonの本を読み終える

2冊目も読み終えたい

発表内容:pythonについて学習を進めている 特にdeeplearningの基礎について

今現在はmnist(エムニスト)という手書き数字の画像セットのダウンロードができたので、次回までに文字を判別する仕組みについて学びたいと思う

mnist:mnistは機械学習の分野で最も有名なデータセットの一つであり、簡単な実験から論文として発表される研究まで様々な場所で利用されている

mnistデータセットは、0から9までの数字画像から構成されている 訓練画像が60000枚、テスト画像が10000枚用意されており、それらの画像を使用して学習と推論を行う

一般的なmnistデータセットの使い方では、訓練画像を使って学習を行い、学習したモデルでテスト画像に対してどれだけ正しく分類できるかを計測する

mnistの画像

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/mnist_gazou.png

何の情報を判別させるか、(明るさ(色スケール)、セロテープ試験、膜厚試験

今度耐候性橋を見に行く

2024/5/29 までの課題

機械学習環境と構築する

1冊目(いちばんやさしいpythonの本

2冊目(ゼロから作るDeep Learning

2024-06

2024-06-23

人通り読み終えられた 理解を深めたい

2024-06-24

anacondaとtensorflowの違い

進捗なし

2024-06-13

忘れている箇所が多かったので復習した

2024-06-12 ゼミがあった 引き続き進める

2024-06-11

mnist(エムニスト)データセットのダウンロード方法がわからない

githubをダウンロードするといいのかも?

githubのダウンロード方法 codeからdownload zip

zipファイルの解凍

圧縮 zip -r xxxx.zip directory 解凍 unzip xxxx.zip

※unarコマンドを@Hayakuchi0さんから教えてもらいました。 Windows上で日本語ファイル名のファイルをzipで圧縮して、Linux上でunzipにより解凍すると文字化けすることがありますが、unarで解凍すると文字化けしないようです。

unar xxxx.zip

私が確認した環境CentOS7にはunarはインストールされていなかったので、 インストールして試しました。

unarはzip以外も解凍できるようです。

このページを読み込みたい

cd anaconda3

cd deep-learning-from-scratch-master

cd ch03

2024-06-10

進捗(120/273)

2024-06-09 進捗 (96/273)

2024-06-08 進捗(53/273)

2024-06-07

anaconda3からnumpyを開くことができた。

2024-06-06

明日やること : Numpyのダウンロード

・2024-06-04.05

進捗なし

・2024-06-03

引き続き本を読み進めたい

・2024-06-02

一冊目を読み終えたが、まだ理解しきれてない箇所が多い

・2024-06-01

第10章まで読み終えた

2024-05

・2024-05-31

第8章まで読み終えた

・2024-05-30

pythonの本を使って学習を進めた また、デスクトップのセットアップもしてもらった 引き続き、pythonの勉強を進めたい

・2024-05-29

ゼミがあった。次回のゼミまでに本を読み終えたい

・2024-05-28 (火) 13:16:24 condaコマンドを認識させることができた

Python 3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0] on linux Type "help", "copyright", "credits" or "license" for more information.

文字の並べ替えプログラム /pyworks/words_sort.py 画像保存名:words.sort.png

・2024-05-27 condaコマンドが認識されない もう一度やり直さないといけないかも

・2024-05-26 pythonの本を読んだ

・2024-05-25 進捗なし

・2024-05-24 進捗なし

・2024-05-23 pythonの本を読んだ pythonの仕組みについてなんとなく理解が深まった

・2024-05-22 anacondaをインストールできたと思う tensorflowなどのライブラリのインストールは後日にしようと思う

anacondaをインストールしたことでpython3.8を起動できている

※anacondaは無償区分と有償区分があるらしい(参考記事) 

無償で使える条件として 個人かつ非商用目的による使用 教育機関における学生または教員の使用 とあるので大丈夫だと思う

vs code(テキストエディタ:pythonのコードを一つにまとめるためのもの)のダウンロードもできた

vs codeの開き方:ターミナルでcodeと入力

じゃんけんプログラム

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/janken_2024_05_24.png

・2024-05-21

機械学習を行うための環境をつくるためのプロセスを整理した

1.機械学習を行うためにはPythonが実行できるための開発環境が必要

 そのためにanacondaをインストールする

 anacondaをインストールすることで複数の仮想環境を作成して切り替えて使える

2.仮想環境の作成を行い、必要なライブラリをインストールする

Numpy:数値計算 Pandas:データ操作と分析 Matplotlib/Seaborn:データ可視化 Scikit-learn:ディープラーニング TensorFlow/Keras:ディープラーニング PyTorch:ディープラーニング

・2024-05-20 進捗なし

・2024-05-19 前提知識がなくて理解が進まない とりあえず、tenslorflowをダウンロードしてみたいと思う。

ubuntuの場合直接ダウンロードできる と思う

・2024-05-18 機械学習の環境構築するための手順

1.パソコンを準備(Linux ubuntu20.04)

2.言語を決める(python)

3.言語をインストールする(python2.7がインストール済み)

4.環境構築ツールを導入する

anacondaが最適かも

tensorflowを使用するためにはハードウェアの性能の高さが求められる?

tensorflowとは機械学習に用いるためのソフトウェアライブラリ

・2024/05/17 機械学習について調べてみた 教師あり学習 数値を予測する回帰 カテゴリを予測する分類

・2024/05/16 機械学習の環境構築についてもう少し調べたい ubuntuでの環境構築方法について

・2024/05/15 使用しているパソコン Ubuntu20.04 フリーの機械学習ツールに何があるか ex.tensorfolw

パソコン上に機械学習ができる仮想環境を整理する必要がある

参考資料等

日時置換文字

2024-05-28 13:15:45 2024-05-28 (火) 13:15:45

   行中で &date; と書くと、更新時の日付に置換されます
   行中で &time; と書くと、更新時の時刻に置換されます
   行中で &now; と書くと、更新時の日時に置換されます
   &date;、 &time;、 &now;は、記事が書き込まれるときに置換されて記録されます。
   &date;、 &time;、 &now;は、他のインライン要素の子要素になることができます。
   &date;、 &time;、 &now;は、他のインライン要素を子要素にはできません。

2024-06-24 05:41:13 2024-06-24 (月) 05:41:13

   行中で &_date; と書くと、表示時の日付に置換されて出力されます。
   行中で &_time; と書くと、表示時の時刻に置換されて出力されます。
   行中で &_now; と書くと、表示時の日時に置換されて出力されます。

Ubuntuについて

CPUについて

環境構築

ITにおける「環境」とは、導入されるシステムやソフトウェアから見た、そのコンピュータ全体のこと 環境構築とは、作業に適した環境を整えること  実行環境と開発環境がある

実行環境

実行環境とは、プログラムやソフトウェアが稼働するために必要なものが揃っている環境のこと プログラムやソフトウェアを動かすためには、条件を整える必要がある。 回線や機材といったハードウェアや、そのプログラミムが動作するためのコンピューター内のソフトウェアです。 「実行環境構築」とは、あるプログラムやソフトウェアを動かすための環境を整えることを指す

開発環境

システムを開発するために必要な環境のことを指す。また、インターネットが必要であれば準備をする 必要なソフトウェアがあればインストールするなど、開発に必要な条件を整えることを「開発環境構築」という 「開発環境」で開発されたシステムは「テスト環境」にて正しく動作するか検証され、ここで問題がなければ「本番環境」と呼ばれる環境で実際に使われることになる。

ローカル環境

個人のコンピュータ内に構築された環境のこと 仮想マシンとは、ローカル環境の中に、ある特定の環境を模して構築されたソフトウェアのこと 個人のコンピュータの中に、擬似サーバーを用意するというイメージ

3年次

エラーコード [#dd0f431c]

時間が足りないとき

  !<S> Exception user raised but not interceptee.  !        
  ! The bases are fermees.                         !   
  ! Type of the exception: ArretCPUError           !   
  !  [('?', (), (), ())]                           !   
  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   

春課題 弾塑性 [#td1a199a]

創造工房第7回(12/8) [#w0f71c42]

サンドイッチ梁:単純梁(木材+鋼材)の解析 [#v5b1d60b]

メッシュの長さ要素数変位(mm)相対誤差(%)計算者
0.71551920.0837890524615.365安藤
0.81388080.0838038649115.350安藤
0.9825870.08370707398115.45兼田
1.1386710.08420120760214.95兼田
1.2319290.08368815.466柴田
1.3286210.08366915.4857柴田
1.4288540.0836815.47佐藤
1.5200150.08405215.10佐藤
1.6194480.083540293815.62皆川
1.7138010.083435509815.72皆川
1.8125280.08373315.42永山
1.9117690.08392415.23永山
2106990.08407687655915.074
335790.0841456175315.004
416280.08279416.37服部
510160.08303318.89服部
6839-0.08288216.26梶原
7554-0.08087118.28梶原
82850.07999519.20工藤
92610.07898020.22工藤
102320.08191117.26佐々木
112080.07567623.56佐々木
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/sand_kekka_1215.png

創造工房第6回(11/29) [#x7bfb3cd]

単純梁(異方性1次・等方性2次)の解析 [#u789f929]

異方性1次
メッシュ長さ要素数変位相対誤差計算者
0.71445630.5052522.76安藤
0.81415170.5046922.64安藤
0.9916480.5025952.216兼田
1.1271600.4899140.363兼田
1.2246750.4870880.791柴田
1.3234460.48680100.995柴田
1.4177380.4859991.16佐藤
1.5154380.4851801.33佐藤
1.6159000.4832861.71皆川
1.7121420.4779522.80皆川
1.8116040.4820851.9554永山
1.9103910.4708874.2329永山
2102910.4809102.19
323280.43193712.15
415000.43015612.52服部
54320.28296842.45服部
63560.344155630.00梶原
71960.21393456.49梶原
81040.22987453.25工藤
9810.23230852.75工藤
10780.20327158.65佐々木
11630.22231654.78佐々木
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/ihousei1zi_kekka_1208.png
等方性2次データ
メッシュ長さ要素数変位相対誤差計算者
0.71445630.4301243.22安藤
0.81415170.4301323.22安藤
0.9916480.4300203.197兼田
1.1271600.4298283.151兼田
1.2246750.4298363.15柴田
1.3234460.429743.13柴田
1.4177380.4297971.3佐藤
1.5154380.4299583.14佐藤
1.6159000.4297553.18皆川
1.7121420.4296763.11皆川
1.8116040.4298293.1507永山
1.9103910.4296843.1159永山
2102910.4296203.10
323280.4291692.99
415000.4292543.01服部
54320.4281702.75服部
63560.4284522.82梶原
71960.425912.21梶原
81040.4260742.25工藤
9810.4255522.12工藤
10780.48838217.20佐々木
11630.4239729.0534佐々木
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/touhousei2zi_kekka_1208.png

11/24(金)創造工房5回目 [#e5d84b63]

単純梁(等方性1次)の解析 [#tb5d98da]

メッシュ長さ要素数変位相対誤差計算者
0.714552340.4224840.01388安藤
0.81429730.4225700.01409安藤
0.991648-0.4204370.897兼田
1.127160-0.4056182.659兼田
1.2246750.4043492.96柴田
1.3234460.4041853.00柴田
1.4177380.3986044.34佐藤
1.5154380.3965934.83佐藤
1.6161220.3982124.44皆川
1.7120260.3934115.59皆川
1.8116040.3936685.53永山
1.9103910.3906956.24永山
210921-0.3951035.18
32328-0.32476222.06
41500-0.15501362.80服部
5432-0.06527884.33服部
63570.21306248.87梶原
71960.101975.55梶原
81040.115862472.20工藤
9810.125511869.88工藤
1078-0.0773381.44佐々木
1163-0.199952.03佐々木

http:http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/kadai5.png

11/17(金)創造工房4回目 [#y86d3d92]

片持ち梁の解析(サロメ) [#ydde7141]

メッシュ長さ要素数先端変位(4隅の平均値)[mm]相対誤差(\( \frac{salome-手計算}{手計算} \))計算者
0.71984646.542811.91安藤
0.81138126.51042.39安藤
0.9402806.36315254.60兼田
1.1300556.33635255.00兼田
1.2264676.30433755.48柴田
1.3251806.3043555.48柴田
1.4322126.316125.31佐藤
1.5177536.12098.23佐藤
1.6142966.20446256.98皆川
1.7135966.21566256.81皆川
1.828665.73775513.98永山
1.960015.726362514.15永山
256175.645852515.355
323095.472875517.948
46173.61605750.458服部
54943.85803750.422服部
65812.5068262.416梶原
71331.4122578.827梶原
8781.288717580.68工藤
9721.287992580.69工藤
10601.1434482.85佐々木
11651.2312481.154佐々木

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/katamoti4.png 11/10 (金) 創造工房3回目 [#pc409efa]

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2023/satou/b.png

10/27(金) 創造工房実習2回目 [#r022fb54]

コマンド [#nbf6e469]

ls :今いる場所

cd :ファイルを開く

pwd :今いる場所

gedit (ファイル名) :テキストファイルを開く

cp (ファイル名) :コピー

vi (ファイル名) :テキスト上で表示

Esc : q  テキストを閉じる (w 保存 q 出る)

cat  :確認

rm (ファイル名) :削除

cd .. :一つ前に戻る

cd /(住所) :住所にいく

10/20(金)創造工房1回目 [#ae52abcf] あああああ

表サンプル [#ebafbcdf]

メッシュの長さ要素数変位[mm]相対誤差(salome−手計算/手計算)計算者
0.7安藤
0.8安藤
0.9兼田
1.1兼田
1.2.柴田
1.3柴田
1.4佐藤
1.5佐藤
1.6皆川
1.7皆川
1.8永山
1.9永山
2
3
4服部
5服部
6梶原
7梶原
8.工藤
9工藤
10佐々木
11佐々木

その他

UNIXコマンド https://www.str.ce.akita-u.ac.jp/~gotou/linux/vine.html#unix

python用語

vs codeの開き方:ターミナルでcodeと入力 pythonの開き方:ターミナルでpython(バージョン)と入力 pythonの閉じ方:ctrl + D

anacondaのライブラリなどを開く方法:cd anaconda3 → python

※「,」は表中に入れてしまうと、列が増えてしまうため「,(大文字)」or「、」のどちらかで入力している

用語意味使い方例(入力)出力結果
len長さを測るlen('python')6
str引数を文字列に変換する'python'+ str(version)'python3.6'
printデータの内容を表示するprint('python', 3.6)python 3.6
printsepをつけた場合print('python',sep='---'python---3
range範囲、並びnumber_list10 = range(10) -> number_list_10range(0、10)
address変数に名前をつける(文字列データ)address = 'Tokyo、Japan'特になし
split分けるaddress.split(',')['Tokyo','Japan']
splitaddress.aplit('o')['T'、'ky'、'Japan'、]
upper文字を大文字に変換する文字列のメソッドaddress.upper()'TOKYO'、'JAPAN'
index引数で指定した文字が最初に出てくるのが何文字目かaddress.index('、')5(indecは最初の文字を0として数える)
importインポートするimport datetime

リスト(list)

空っぽのリストを作る ー> new_list = []

list組み込み関数list(range(1、11)「一から始まって11の手前まで」という意味になる[1、2、3、4、5、6、7、8、9、10]
list_Aリストを作るlist_int = [0、1、2、3] -> print(list_int)[0、1、2、3]
list_A[x] = [1]xを1に変えるlist_int[0] = 1特になし
list_A.append(1)一番うしろに1という要素を追加list_int.append(1)特になし
list_A.insert(x、y)xの要素の前にyを追加list_int.insert(1、5)特になし
list_A.pop(x)x番目の要素を戻すと同時に削除list_int.pop(1)]
list_A.remove('X')指定の要素をそのまま削除list_mix.remove('test')
list_A + list_mixリストの連結list_int + list_mix
list_A.extend(list_B)リストの拡張list_int.extend(list_mix)

リスト並べ替え「list_A.メソッド」

メソッド意味備考
sort小さい順 昇順文字はアルファベット順、大文字ー>小文字の順
reverseデータの順番を逆さまにする

タプル(要素の追加や削除ができないリスト)

tuple_test = (1、2、3、'100yen')

セット(単純なデータの集まり リストやタプルのように順番もなければ辞書のような値を呼び出すキーもない 箱の中におもちゃが入っているイメージ)

特徴は同じものを2つ入れられない

test_set = set()setを作成
test_set.add(1)要素を追加
test_set.remove(3)要素を削除

辞書型

変数 = {key:value}意味
country_code = {1:'America'、39:'Italia、86:'China'}組み合わせを作成
country_code[81] = 'Japan'81とJapanという組み合わせを追加

datetime型 [#wb96f17d]

データ型説明
dateある1日の(年月日)を表現する
timeある時刻(時分秒)を表現する
datetimeある日のある時刻(年月日時分秒)を表現する
timedelta2つの時点の差を表現する
tzinfo世界中の時間を扱うためのどこのタイムゾーンであるかの情報を保持する

編集用


トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-06-23 (日) 23:34:53