合板応急橋の試験データはk2のdata/gouhanの中

mentatエラー(終了番号の説明)

http://www14.atwiki.jp/marc/pages/29.html

13

  • 入力データにエラーがある。

3300

  • 固有値抽出が最大許容反復回数内で収束できない。
  • BUCKLEオプションで反復回数か収束判定許容差を大きくする。

3301

  • 質量か初期応力剛性がゼロになっている。
  • 座屈解析では構造に荷重がすでに適用され、応力状態が存在していることを確認する。

3302

  • 解析においてランチョス法による固有値抽出の途中、非正定値マトリクスになった。
  • 解析実行前に作用荷重を減らすか、BUCKLEを用いて逆べき乗法に切り替えてみる。

3305

  • BUCKLEオプションのTOLERANCEとMAX#をいじるといいかも
  • あと次数にも影響してるっぽい
  • BUCKLE MODESを3とかにしてみるとできたりする

mentat資料

参考文献

mentatメモ

mentatの起動の仕方

mentat弾塑性解析

  • MATERIAL PROPERTES
    • PLASTICITY→VON MISESS→ISOTROPIC→YEILD STRESS(初期降伏応力入力 N/mm2)

弾塑性モデルの作り方(鉄の引張)

  • 作成モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/SS400MODEL.png
    • 幅:0.1m,高さ0.1m,軸方向:1m
    • ヤング率:206GPa
    • 降伏点:235MPa

MESH GENERATION

  • NODES:ADD(x,y,z)座標を打ち込む
    • (0,0,0) (1,0,0) (1,0.1,0) (0,0.1,0)  (0,0,0.1) (1,0,0.1) (1,0.1,0.1) (0,0.1,0.1)
  • ELEMENT CLASS
    • HEX (8)を選択
  • ELEMENT:ADD
    • 座標を打ち込んだ順に点をクリックしていく
  • SUBDIVIDE(分割数)
    • DIVISIONS(x,y,z)の順に分割数の値を入れる。 今回は分割数を(x:512,y:32,z:32)
    • ELEMENTS→ALL:EXIST
  • SWEEP(点同士をつなぐ)
    • REMOVE UNUSED:NODES→ALL
  • RENUMBER
    • ALL

MAIN MENUに戻る。

GEOMETRIC PROPERTIES(幾何学特性)

  • NEW→STRUCTURAL→3-D→SOLID→PROPERTIES→ASSUMED STRAIN →OK→ELEMENTS:ADD→EXIST。

MAIN MENUに戻る。

MATERIAL PROPERTIES(材料特性)

  • MATERIAL PROPERTIES→NEW→STRUCTURAL→YONG'S MODULUS(ヤング率):206000(MPa), POISSIN'S RATIO(ポアソン比):0.3を与える。
  • 弾塑性要素にする場合
    • PLASTICITY→YELD STRESS:235(MPa)→OK→ELEMENTS:ADD→EXIST。

MAIN MENUに戻る。

BOUNDARY CONDITIONS(境界条件)

  • NEW→STRUCTURAL→FIXED DISPLACEMENT→PROPERTIES →DISPLACEMENT X Y Zにクリック。(X,Y,Zを拘束する)→OK →NODES:ADD拘束したい箇所を囲む(点が緑になっていれば選択せれている)→右クリック。
  • NEW→STRUCTURAL→POINT LOAD(荷重)またはFACE LOAD(面荷重)
  • POINT LOAD(荷重)の場合
    • FORCE X,Y,Zの与えたい方向を選択し、荷重を入力する。
  • FACE LOAD(面荷重)の場合
    • PRESSUREを選択し、与えたい応力(MN/m^2)を入力する。 →OK→FACES:ADD与えたい箇所を囲む→右クリック。

MAIN MENUに戻る

LOADCASES

  • NEW→STATIC→LOADS→すべての境界条件に必ずチェックを入れる。入れないと反映されない→STEPに1と入力

MAIN MENUに戻る

JOBS

  • NEW→PROPERTIES→lcase1をクリック。 →INITIAL LOAD→すべての境界条件に必ずチェックを入れる→OK →JOB RESULTS(見たい結果にチェックを入れる)→今回はSTREESとTOTAL STRAINを選択→OK →SAVE→RUN→SUBMIT(1)でモデルを走らせる

RESULTS(結果を見る)

  • OPEN DEFALT→LAST
  • どういう変形をしているか見たい時
    • DEF ONLY1またはDEF&ORIG
  • たわみの値を見たいとき
    • SCALARをDisplacementX,Y,Zの見たい変位方向を選択し、OK→NUMERICS
    • VIEWとかMOVEを駆使して節点番号を調べてから→Result→TOOLS→SHOW NODESで節点番号を入力するとその点のたわみ量が見れる。

降伏後の傾きの変え方

  • MATERIAL PROPERTIES→TABLES→NEW→1INDEPENDENT VARIABLE→TYPE:eq_plastic_strain→ADD(塑性ひずみ,応力)という感じで値を打ち込み、塑性後のグラフを作成する→FIT→RETURN→STRUCTURAL→PLASTICITY→YIELD STRESS1にする(降伏応力の設定table1をそのまま使用するため1倍とする)→TABLE→table1を選択→SHOW TABLEをSHOW MODELに直す

ccxからmentatにインポートする方法

非一体化モデルの作り方

インポート

  • FILE→INPORT→ABAQUS→モデルを選択(この時点では一体化モデル)

プレストレス(面荷重)

  • BOUNDARY CONDITION→NEW→STRUCTURAL→FACE LOAD→PROPERTIES→PRESSURE、ここに値を入力
  • プレストレス値の決め方→本来、プレストレスの作用点は片持ち梁の場合、yz面から見れば上部に5箇所、下部に5箇所、裏にも同じようにあるので全部で20箇所ある。yz面から見た上部だけ考えると1箇所にかかるプレストレスは70kN=0.07MNで、これが5箇所あるので合計すると0.35MN。1要素にかかる力を1要素の面積で割ってあげると0.972MN/m2という値が得られる。

鋼板と木材をばらしてくっつける

  • とりあえず邪魔な矢印を一旦非表示にする、BOUNDARY CONDITIONで適当に境界条件を与える(後で必ず消す)→MESH GENERATION→MOVE→TRANSTLATIONSのxに適当な値を入れる→ELEMENT→離したい要素を選択→黄色になる→右クリック ※離れない場合 MESH GENERATION→SUBDIVIDE→DIVISIONS(1,1,1)で全てに適用でもう一度やってみる
  • 全部やったらSWEEP→NODES→ALL 今の逆手順をやることで非一体の状態となる。TRANSTLATIONSのxにはマイナスをつける

荷重

  • BOUNDARY CONDITION→プログラムの時点では1つの節点に付き0.000203252MN(断面の節点数246)となっているが、非一体化モデルでは一体化モデルより断面の節点が増えるので1つの節点に付き0.000146199MN(断面の節点数342)と与える

摩擦係数を与える

  • CONTACT→CONTACT BODIES→NEW→DEFORMABLE→PROPERTIES→FRICTION COEFFICIENT →摩擦係数を入力→ELEMENT ADD→要素を選択→黄色になる→右クリック→現段階では要素に摩擦係数を与えている

LOADCASESの設定

  • LOADCASES→STATIC→LOADS→すべての境界条件に必ずチェックを入れる。入れないと反映されない→STEPに1と入力

JOBの設定

  • JOBS→PROPERTIES→INITIAL LOAD→すべての境界条件に必ずチェックを入れる
  • JOBS→PROPERTIES→CONTACT CONTROL→TYPE→STICK SLIP
  • JOBS→PROPERTIES→JOB RESULTS→STREESとTOTAL STRAINを選択
  • JOBS→RUN

画面の配色

  • VISUALIZATION→COLORS→COLORMAPで番号を選択

要素が選択できない

  • VISUALIZATION→PLOT→RESET(下の方)してからREDRAW

節点や要素、境界条件の表示、非表示

  • VISUALIZATION→PLOT→それぞれのチェックを入れるか外す

ASSUMED STRAIN

  • GEOMETRIC PROPERTIES→PROPERTIES→ASSUMED STRAIN、ここにチェックを入れると今より正確な値が得られるかも?

結果を保存

  • モデルを走らせる→Result→open default→画面下のsave
  • 結果を見たい時、走らせる前のモデルを開く→Result→open defaultの画面で保存した結果のファイルを開く
  • 改めて結果を見たい時にわざわざ走らせなくていいので便利

たわみの値をみる

  • VIEWとかMOVEを駆使して節点番号を調べてから→Result→TOOLS→SHOW NODESで節点番号を入力する

グラフ

書き方

  • Result→PATH PLOT→NODE PATH→2点選ぶ→選択した点が黄色になる→右クリック→ADD CURVE→ADD CURVE→VARIABLESで縦軸、横軸の順に項目を選択→FIT→完了

節点番号からたわみの値をみる

  • Result→TOOLS→SHOW NODE→節点番号を入力→下モニターにたわみの値が表示される

モデル画面への戻り方

  • PATH PLOTの画面でSHOW PATH PLOTをSHOW MODELにする

荷重が反映されない

  • インポートして境界条件で荷重以外の力(プレストレスとか)を入れた後にLOADCASESのLOADSにチェックを入れないと走らせた後に結果に反映されないので注意

dとE

  • mentatはEは読み込めるけど、dは読み込めないのでinpファイルなどに注意

mentat座屈解析

  • LOADCASESでいったんSTATICで解析した後にBUCKLEで再び解析するとできるみたい
  • HELL要素で座屈荷重が得られなかったがJOBSでANALYSIS OPTIONSをいじったら手計算と同じ値が得られた。

倍率変更

  • DEFORMATION SCALINGをMANUALにして自分で値を入力する

鋼板を用いた弾塑性材料挟んだモデル

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/onsaitedmodel.png

鋼板を用いた弾塑性要素モデル幅員方向とたわみ

幅員方向(m)変位(mm)
05.93122
0.00455.95046
0.0095.96992
0.00955.99278
0.015.99186
0.076.33373
0.136.78022
0.13056.7855
0.1316.78709
0.1917.1762
0.2517.53936
0.25157.54372
0.2527.54454
0.3127.77123
0.3727.98269
0.37257.9854
0.3737.98457
0.4337.99928
0.4937.98457
0.49357.9854
0.4947.98269
0.5547.77456
0.6147.54454
0.61457.54372
0.6757.53936
0.7357.1462
0.73556.78709
0.7366.7855
0.7966.78022
0.8566.33373
0.85655.99186
0.8575.99278
0.86155.96992
0.8665.95046

オンサイト木橋弾塑性材料挟んだモデルと非一体化モデルの比較

  • nz=512
    • 縦軸:たわみ(m),横軸:幅方向(m)
    • 赤線:弾塑性材料モデル,青線:非一体化モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/onsaitedgurahu.png

弾塑性解析

  • せん断応力から降伏応力を求める式 \( \bar{\sigma}=\sqrt{3}\tau_{zx} \)
  • 相当応力\( \bar{\sigma} \)を求める式

\( \bar{\sigma}=\sqrt{\frac{3}{2}}\sqrt{S_{xx}^2+S_{yy}^2+S_{zz}+2(S_{xy}^2+S_{yz}^2+S_{zx}^2)} \)

\( S_{xx}=\sigma_{xx}-\sigma_{m} \) \( S_{yy}=\sigma_{yy}-\sigma_{m} \) \( S_{zz}=\sigma_{zz}-\sigma_{m} \) \( S_{xy}=\sigma_{xy} \) \( S_{yz}=\sigma_{yz} \) \( S_{zx}=\sigma_{zx} \)

\( \sigma_{m}=\frac{1}{3}(\sigma_{xx}+\sigma_{yy}+\sigma_{zz}) \)

プレストレスを考慮する場合 \( \bar{\sigma}=\sqrt{\frac{3}{2}(\sigma_{zz}^2+2\sigma_{zx}^2)} \)

一番端に応力集中を防ぐために端の荷重をなくした場合

真ん中の点(0.1m,0.04m,0.001m)

荷重(N)\( \sigma_{Mises} \)相当応力\( \sigma_{xx} \)\( \sigma_{yy} \)\( \sigma_{zz} \)\( \tau_{xy} \)\( \tau_{yz} \)\( \tau_{zx} \)変位(m)
10000.08602580.08601606700001.34224E-180.049661406.29E-10
50000.4301290.43008033905.18696E-158.10463E-17000.2483073.14584E-9
100000.8602580.86016067901.037E-141.620E-1603.13985E-180.4966146.29167E-9
150001.290391.29024102001.29674E-1502.148E-170.7449219.4375E-9
200001.720521.72032135900001.514E-170.9932281.25833E-8
250002.150642.1503930398.299E-1406.4837E-1604.29518E-171.241531.573E-8
260002.236672.23642400300002.269E-171.29121.63583E-8
290002.494752.49446493200002.269E-171.440181.82458E-8
300002.580772.58047857500008.347E-171.489841.8875E-8

挟む部材に一様な荷重かけた場合

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/sendan1.png

  • 降伏応力:100MPa
  • 長さ:200mm=0.2m
  • 幅:80mm=0.08m
  • 高さ:1mm=0.001m

真ん中の点(0.1m,0.04m,0.001m)

荷重(N)\( \sigma_{Mises} \)相当応力\( \sigma_{xx} \)\( \sigma_{yy} \)\( \sigma_{zz} \)\( \tau_{xy} \)\( \tau_{yz} \)\( \tau_{zx} \)変位(m)
10000.08602580.08601606700001.34224E-180.049661406.29E-10
50000.4301290.43008033905.18696E-158.10463E-17000.2483073.14584E-9
100000.8602580.86016067901.037E-141.620E-1603.13985E-180.4966146.29167E-9
150001.290391.29024102001.29674E-1502.148E-170.7449219.4375E-9
200001.720521.72032135900001.514E-170.9932281.25833E-8
250002.150642.1503930398.299E-1406.4837E-1604.29518E-171.241531.573E-8
260002.236672.23642400300002.269E-171.29121.63583E-8
290002.494752.49446493200002.269E-171.440181.82458E-8
300002.580772.58047857500008.347E-171.489841.8875E-8
  • 荷重と変位(縦軸:荷重(N),横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/so.png

端の点(0.2m,0m,0.001m)

  • 応力が集中している
    荷重(N)\( \sigma_{Mises} \)相当応力\( \sigma_{xx} \)\( \sigma_{yy} \)\( \sigma_{zz} \)\( \tau_{xy} \)\( \tau_{yz} \)\( \tau_{zx} \)変位(m)
    10000.7014450.8120.5444470.085576-0.079059-0.01290.002760.2555.232-9
    100007.014458.0665.444470.855756-0.79059-0.1291210.02755582.545345.232E-8
    1500010.521712.184932478.16671.28363-1.18589-0.1936810.04133373.8187.84864E-8
    2000012.293514.747434489.965162.07722-1.06716-0.2008250.04647434.480411.08583E-7
    2500011.199514.174330368.535473.6565-0.334745-0.0348780.02110374.87861.75359E-7
    30000104.516153.26422-1.53686-0.118612-0.007612434.957814.65926E-7
  • 30kN超えると3002となる(正常に終了できない)。
  • 荷重と変位(縦軸:荷重(N),横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/misesg.png
  • mentatミーゼス応力の分布 http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/mises.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/mises1.png

  • 30kN載荷したとき http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/mises2.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/mises3.png

鋼板と挟む部材を組み合わせた場合

荷重変位(m)
00
10005.23757E-6
50002.61878E-5
100005.23757E-5
200001.08686E-4
210001.18595E-4
220001.3037E-4
230001.42581E-4
240001.55667E-4
250001.7549E-4
300005.56882E-4
  • 荷重と変位(縦軸:荷重(N),横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/d2.png
  • 解析モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/kousoku.png
  • 鉄の種類:SS400
  • 降伏応力:235N/mm^2
  • 鉄の寸法等
    • 長さ:1m
    • 幅:10cm
    • 高さ:10cm
    • ヤング率E=206GPa
    • ポアソン比ν=0.3
  • 断面積:100cm^2=10000mm^2
  • 分割数:nx=128,ny=10,nz=10
荷重(N)変位(m)
1.00E62.315E-5
2.00E64.630E-5
2.35E65.440E-5
2.50E65.787E-5
3.00E66.945E-5
4.00E69.260E-5
5.00E61.204E-4
6.00E61.569E-4
7.00E62.058E-4
8.00E63.079E-4
  • 荷重と変位(縦軸:荷重(N),横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/d1.png

塑性論の基礎

材料を挟んだ場合

  • 解析モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/dansoh.png
  • 台(鋼材)の寸法等
    • 分割数:nx=128,ny=6,nz=6
    • 長さ:60cm
    • 幅:24cm
    • 高さ:1cm
    • ヤング率:206GPa
    • ポアソン比:0.3
  • 試験体(木材)の寸法
    • 分割数:nx=128,ny=6,nz=6
    • 長さ:20cm
    • 幅:8cm
    • 高さ:10cm
    • Ex=6GPa,Ey=Ex/25,Ez=Ex/25
    • nxy=0.4,nyz=0.016,nzx=0.016
    • Gxy=400,Gyz=400,Gzx=400
  • 間に挟む材料の寸法等
    • nx=128,ny=6,nz=2
    • 長さ:20cm
    • 幅:8cm
    • 厚さ:1mm
    • Ex=6GPa,Ey=Ex/25,Ez=Ex/25
    • nxy=0.4,nyz=0.016,nzx=0.016
    • Gxy=400,Gyz=400,Gzx=400
    • 降伏応力:\( \sqrt{3} \)×摩擦試験のせん断降伏応力=1.0985E-04
      引張力(N)せん断応力σzx変位(m)
      0.51.992E-113.220E-5
      0.62.392E-113.866E-5
      0.72.794E-104.518E-5
      0.83.209E-105.182E-5
    • 引張力0.9でexit number3002解析できなくなる
    • 分割数少なくすると解析できるそうだ
    • 挟んだ材料に降伏条件を与えてもうまく降伏してくれない

接触解析

  • 解析モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/masatu128.png
    • 上からの応力:1N/mm2
    • 摩擦係数:0.5
  • 台(鋼材)の寸法等
    • 長さ:60cm
    • 幅:24cm
    • 高さ:1cm
    • ヤング率:206GPa
    • ポアソン比:0.3
  • 試験体(木材)の寸法
    • 長さ:20cm
    • 幅:8cm
    • 高さ:10cm
    • Ex=6GPa,Ey=Ex/25,Ez=Ex/25
    • nxy=0.4,nyz=0.016,nzx=0.016
    • Gxy=400,Gyz=400,Gzx=400
応力(MPa)変位(m)鋼材と木材のズレ(m)せん断応力σzx(MPa)
0.51.577E-0800.256
0.61.893E-0800.307
0.72.208E-0800.358
0.82.523E-0800.409
0.92.839E-0800.461
1.03.074E-063.044E-060.501
1.11.573E-051.570E-050.519
1.20.125190.125190.677
  • 応力と変位の関係(縦軸:応力σ 横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/jis6.png
  • 上からの荷重:2N
  • 摩擦係数0.5
  • 台(鋼材)の寸法等
    • 長さ:60cm
    • 幅:24cm
    • 高さ:1cm
    • ヤング率:206GPa
    • ポアソン比:0.3
  • 試験体(木材)の寸法
    • 長さ:20cm
    • 幅:8cm
    • 高さ:10cm
    • Ex=6GPa,Ey=Ex/25,Ez=Ex/25
    • nxy=0.4,nyz=0.016,nzx=0.016
    • Gxy=400,Gyz=400,Gzx=400
引張力(N)変位(m)鋼材と木材のズレ(m)せん断応力σzx(MPa)
0.51.971E-1203.199E-05
0.62.366E-1203.839E-05
0.72.760E-1204.479E-05
0.83.154E-1205.118E-05
0.93.549E-1205.759E-05
0.993.909E-1206.342E-05
1.02.484E-102.446E-106.328E-05
1.11.717E-091.713E-096.571E-05
  • せん断応力と変位の関係(縦軸:せん断応力σzx 横軸:変位(m)) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/jis128.png

鉄の引張試験

弾塑性解析

  • 解析モデル http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/SS400MODEL.png
  • 鉄の種類:SS400
  • 降伏応力:235N/mm^2
  • 鉄の寸法等
    • 長さ:1m
    • 幅:10cm
    • 高さ:10cm
    • ヤング率E=206GPa
    • ポアソン比ν=0.3
  • 断面積:100cm^2=10000mm^2
  • 分割数:nx=128,ny=10,nz=10

TABLEの場合

応力(MPa)伸び(m)ひずみヤング率(GPa)
502.420E-42.420E-4206.6
1004.839E-44.839E-4206.7
1507.259E-47.259E-4206.6
2009.681E-49.681E-4206.6
2301.114E-31.114E-3206.5
2353.234E-33.234E-3
  • 応力とひずみの関係(縦軸:応力 横軸:ひずみ) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/ss400.png

power lawの場合

応力(MPa)伸び(m)ひずみヤング率(GPa)
1004.846E-44.839E-4206.4
2009.671E-49.671E-4206.8
2351.151E-31.151E-3204.2
2509.251E-19.251E-1
3004.502E-04.502E-0
40011.6611.66
  • 応力とひずみの関係(縦軸:応力 横軸:ひずみ) http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/aaaa.png

TABLEを設定した場合

  • MATERIAL PROPATYの中にあるTABLE機能を用いて、応力と塑性ひずみを入力すれば、完全弾塑性体になる...?
  • 傾きは自分で与える
  • 与えた傾き、応力から塑性ひずみを逆算し、入力
  • 弾性域の傾きは206000
  • 塑性後の傾き2とした場合
    • 与えた塑性ひずみ
      応力(MPa)塑性ひずみ
      2350
      235.15.05705E-2
      235.21.005705E-1
      235.31.505705E-1
      235.42.005705E-1
      235.52.505705E-1
  • 解析結果
    応力(MPa)変位(m)ひずみ
    1004.836E-44.836E-4
    2009.671E-49.671E-4
    2352.083E-32.083E-3
    235.16.229E-36.229E-3
    235.21.258E-21.258E-2
    235.31.856E-21.856E-2
    235.42.433E-22.433E-2
    235.53.015E-23.015E-2
  • 荷重と変位の関係(縦軸:荷重 横軸:ひずみ) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/235-4.png
  • 降伏後の傾き20とした場合
    • 与えた塑性ひずみ
      応力(MPa)塑性ひずみ
      2350
      235.15.05705E-3
      235.21.005705E-2
      235.31.505705E-2
      235.42.005705E-2
      235.52.505705E-2
  • 解析結果
    応力(MPa)変位(m)ひずみ
    1004.836E-44.836E-4
    2009.671E-49.671E-4
    2351.316E-31.775E-3
    235.13.829E-33.829E-3
    235.26.453E-36.453E-3
    235.38.930E-38.930E-3
    235.41.143E-21.143E-2
    235.51.394E-21.394E-2
  • 荷重と変位の関係(縦軸:荷重 横軸:変位) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/235-3.png
  • 降伏後の傾き200とした場合
    • 与えた塑性ひずみ
      応力(MPa)塑性ひずみ
      2350
      235.15.05705E-4
      235.21.005705E-3
      235.31.505705E-3
      235.42.005705E-3
      235.52.505705E-3
  • 解析結果
    応力(MPa)変位(m)ひずみ
    1004.836E-44.836E-4
    2009.671E-49.671E-4
    2351.316E-31.316E-3
    235.11.738E-31.738E-3
    235.22.119E-32.119E-3
    235.32.508E-32.508E-3
    235.42.902E-32.902E-3
    235.53.298E-33.298E-3
  • 応力と変位の関係(縦軸:応力 横軸:変位) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/235.png
  • 降伏後の傾き2000とした場合
    • 与えた塑性ひずみ
      応力(MPa)塑性ひずみ
      2350
      235.15.05705E-5
      235.21.005705E-4
      235.31.505705E-4
      235.42.005705E-4
      235.52.505705E-4
  • 解析結果
    応力(MPa)変位(m)ひずみ
    1004.836E-44.836E-4
    2009.671E-49.871E-4
    2351.183E-31.183E-3
    235.11.225E-31.225E-3
    235.21.270E-31.270E-3
    235.31.315E-31.315E-3
    235.41.361E-31.361E-3
    235.51.406E-31.406E-3
  • 応力とひずみの関係(縦軸:応力 横軸:ひずみ) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/235-1.png
  • 降伏後の傾き20000とした場合
    • 与えた塑性ひずみ
      応力(MPa)塑性ひずみ
      2350
      235.15.05705E-6
      235.21.005705E-5
      235.31.505705E-5
      235.42.005705E-5
      235.52.505705E-5
  • 解析結果
    応力(MPa)変位(m)ひずみ
    1004.836E-44.836E-4
    2009.671E-49.671E-4
    2351.151E-31.151E-3
    235.11.150E-31.150E-3
    235.21.155E-31.155E-3
    235.31.160E-31.160E-3
    235.41.170E-31.170E-3
    235.51.170E-31.170E-3
  • 応力とひずみの関係(縦軸:応力 横軸:ひずみ) http://www.str.ce.akita-u.ac.jp/~gotouhan/j2014/fujimura/235-2.png
  • 鋼材の弾塑性解析引張 鋼材の降伏応力:400N/mm^2 鋼材の寸法 長さ:1m 断面積:正方形断面10cm×10cm=100cm^2=10000mm^2 ヤング率206GPA yield stress 400

FACELOAD を400付近で変えてみる 長さ1mなので伸び=ひずみ

断面分割数nx=ny=12,軸方向分割数=100

FACELOAD最大変位(m)逆算ヤング率(GPa)
3801.840e-3
3901.893e-3
3992.050e-3
399.92.329e-3
4005.732e-3
401不明 15分以上掛かりそう

オンサイト木橋モデル

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/onsaitemodel.png

  • 角材nx=2 , ny=5
  • 鋼板nx=2 , ny=4
  • Ezz木=6.921GPa , Exx木=Eyy木=Ezz木/25 , E鋼=206GPa
  • νxy=0.4 , νyz=0.016 , νzx=0.016
  • Gxy木=Gyz木=Gzx木=Ezz木/15 , G鋼=79GPa

後藤メモ

鋼板のny=14では。

  • 片持ち梁端部のたわみは、下端の値?
  • Marc/Mentatで用いている直方体要素の名前は? mentatで要素を選ぶとき

応急橋モデル

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyumodel.png

  • 角材nx=2 , ny=5
  • 合板nx=2 , ny=4
  • Ezz木=5.690GPa , Exx木=Eyy木=Ezz木/25
  • νxy=0.4 , νyz=0.016 , νzx=0.016
  • Gxy木=Gyz木=Gzx木=Ezz木/15

一体化モデルプレストレスありとなしと非一体化モデル摩擦係数0.4での比較

  • nz=512
    • 縦軸:たわみ(m),横軸:幅方向(m)
    • 赤線:一体化モデルプレストレスなし,緑線:一体化モデルプレストレスなし,青線:非一体化モデル摩擦係数0.4

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyukataz512k20hikaku.png

応急橋片持ち節点共有してないプレストレスあり…摩擦係数の変化で比較

  • nz=512
    • 縦軸:たわみ(m),横軸:幅方向(m)
    • 赤線:摩擦係数0.2,緑線:摩擦係数0.3,青線:摩擦係数0.4,紫線:摩擦係数0.5   http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyukataz512k20f.png

応急橋片持ち節点共有・・・プレストレスなしとありの比較(mentat)

  • プレストレスなし節点共有①
    x(m)変位(m)
    05.46194E-03
    0.065.40277E-03
    0.125.37674-03
    0.1325.37784E-03
    0.1445.36153E-03
    0.2045.31605E-03
    0.2645.30943E-03
    0.2765.31517E-03
    0.2885.30314E-03
    0.3485.27756E-02
    0.4085.28814E-03
    0.4205.29707E-03
    0.4325.28814E-03
    0.4925.27756E-03
    0.5525.30314E-03
    0.5645.31517E-03
    0.5765.30943E-03
    0.6365.31605E-03
    0.6965.36153E-03
    0.7085.37784E-03
    0.7205.37674E-03
    0.7805.40227E-03
    0.8405.46194E-03
  • プレストレスあり節点共有①
    x(m)変位(m)
    05.57192E-03
    0.0605.46803E-03
    0.1205.40478E-03
    0.1325.39994E-03
    0.1445.37865E-03
    0.2045.31558E-03
    0.2645.29956E-03
    0.2765.30416E-03
    0.2885.2914E-03
    0.3485.26369E-03
    0.4085.27337E-03
    0.4205.2822E-03
    0.4325.27337E-03
    0.4925.26369E-03
    0.5525.2914E-03
    0.5645.30416E-03
    0.5765.29956E-03
    0.6365.31558E-02
    0.6965.37865E-03
    0.7085.39994E-03
    0.7205.40478E-03
    0.7805.46803E-03
    0.8405.57192E-03
  • 節点共有で固定・・・プレストレスなしとありの比較①
    • 縦軸:たわみ(m),横軸:幅方向(m)
    • 赤線:プレストレスなし,緑線:プレストレスあり

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyukataz512k20h.png

応急橋3点曲げ解析(mentat)

  • 荷重40KN
    分割数(nz)たわみ(m)相対誤差(%)
    23.693E-0339.32
    44.964E-0218.44
    85.511E-029.45
    165.719E-026.03
    325.816E-024.44
    645.882E-023.35
    1285.930E-022.56
    2565.956E-022.14
    5125.965E-021.99
    理論値6.086E-03

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyu3tenz.png

calculixとmentatの比較

応急橋片持ち幅員方向とたわみの関係(nz=512)

  • 荷重50KN
    ccxmentat
    幅方向x(m)変位(m)幅方向x(m)変位(m)
    01.363617E-0201.36548E-02
    0.061.35057E-020.061.35057E-02
    0.121.34418E-020.121.34418E-02
    0.1321.34446E-020.1321.34446E-02
    0.1441.34038E-020.1441.34038E-02
    0.2041.32901E-020.2041.32901E-02
    0.2641.32736E-020.2641.32736E-02
    0.2761.32879E-020.2761.32879E-02
    0.2881.32578E-020.2881.32578E-02
    0.3481.31939E-020.3481.31939E-02
    0.4081.32203E-020.4081.32203E-02
    0.4201.32427E-020.4201.32427E-02
    0.4321.32203E-020.4321.32203E-02
    0.4921.31939E-020.4921.31939E-02
    0.5521.32578E-020.5521.32578E-02
    0.5641.32879E-020.5641.32879E-02
    0.5761.32736E-020.5761.32736E-02
    0.6361.32901E-020.6361.32901E-02
    0.6961.34038E-020.6961.34038E-02
    0.7081.34446E-020.7081.34446E-02
    0.7201.34418E-020.7201.34418E-02
    0.7801.35057E-020.7801.35057E-02
    0.8401.36548E-020.8401.36548E-02
  • 縦軸:たわみ(m),横軸:幅方向(m)
  • 赤線:ccx , 緑線:mentat

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyukataz512hikaku2.png

応急橋片持ちモデルnz

  • 荷重50KN
    分割数calculix分割数mentat
    nzたわみ(m)相対誤差(%)nzたわみ(m)相対誤差(%)
    28.811E-0342.0928.786E-0342.25
    41.186E-0222.0541.183E-0222.25
    81.307E-0214.1081.306E-0214.16
    161.346E-0211.53161.347E-0211.47
    321.358E-0210.75321.360E-0210.61
    641.362E-0210.48641.365E-0210.29
    1281.363E-0210.421281.367E-0210.15
    2561.364E-0210.352561.367E-0210.15
    5121.365E-0210.295121.367E-0210.15
    理論値1.5215E-02
  • 縦軸:たわみ(m),横軸:分割数
  • 赤線:ccx , 緑線:mentat

http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/oukyukatazhikaku.png

calculix user manual 2.5

P256~

  • DLOAD
  • このオプションは、分布荷重を指定することができる。これらは要素の面に圧力荷重と質量載荷(単位質量あたりの荷重)重力による遠心力によっていずれかが含まれています。 次のように表面載荷するための要素の面は(要素の節点番号はセクション3.1を参照してください)番号が付けられています。
    • ( 六面体要素の: face 1: 1-2-3-4 face 2: 5-8-7-6 face 3: 1-5-6-2 face 4: 2-6-7-3 face 5: 3-7-8-4 face 6: 4-8-5-1 四面体要素の: Face 1: 1-2-3 Face 2: 1-4-2 Face 3: 2-4-3 Face 4: 3-4-1 くさび形要素の: Face 1: 1-2-3 Face 2: 4-5-6 Face 3: 1-2-5-4 Face 4: 2-3-6-5 Face 5: 3-1-4-6 四辺形平面応力、平面ひずみと軸対称要素の場合: Face 1: 1-2 Face 2: 2-3 Face 3: 3-4 Face 4: 4-1 三角形平面応力、平面ひずみと軸対称要素の場合: Face 1: 1-2 Face 2: 2-3 Face 3: 3-1 梁要素の場合: Face 1: pressure in 1-direction Face 2: pressure in 2-direction
    • ) ただひとつの種類の荷重(シェル上の法線方向の圧力)があるので、シェル要素には面番号は必要ありません。

後藤ちゃちゃ(13/7/13)

後藤ちゃちゃ(13/7/13)

ccx箱型断面片持ち

鋼材のみでオンサイト同寸法断面h2

  • b1=0.84m,b2=0.009m
  • h1=0.12m,h2=0.24mから0.04m刻みで1.00mまで増加させた
  • オンサイトのh2初期値=0.5m
  • 厚さはオンサイトと同じ寸法
    h2(m)相対誤差(%)
    2.80000E-01-2.91321E+01
    3.20000E-01-2.70221E+01
    3.60000E-01-2.53371E+01
    4.00000E-01-2.38924E+01
    4.40000E-01-2.26134E+01
    4.80000E-01-2.14579E+01
    5.20000E-01-2.03999E+01
    5.60000E-01-1.94169E+01
    6.00000E-01-1.84997E+01
    6.40000E-01-1.76312E+01
    6.80000E-01-1.68089E+01
    7.20000E-01-1.60234E+01
    7.60000E-01-1.52692E+01
    8.00000E-01-1.45412E+01
    8.40000E-01-1.38387E+01
    8.80000E-01-1.31560E+01
    9.20000E-01-1.24906E+01
    9.60000E-01-1.18417E+01
    1.00000E+00-1.12070E+01
    • 相対誤差と高さh2の関係 http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahukouzaionsitekatagosa.png
      • 縦軸:相対誤差,横軸:h2(m)

鋼材と木材で箱型断面h2

  • b1=0.84m,b2=0.009m
  • h1=0.009m,h2=0.18mから0.05m刻みで1.018mまで増加させた
  • オンサイトのh2初期値=0.5m
  • 厚さは全て同じ
    h2(m)相対誤差(%)
    6.80000E-02-9.16908E+01
    1.18000E-01-8.69721E+01
    1.68000E-01-8.20985E+01
    2.18000E-01-7.72230E+01
    2.68000E-01-7.24022E+01
    3.18000E-01-6.76740E+01
    3.68000E-01-6.30595E+01
    4.18000E-01-5.85704E+01
    4.68000E-01-5.42178E+01
    5.18000E-01-5.00031E+01
    5.68000E-01-4.59331E+01
    6.18000E-01-4.20035E+01
    6.68000E-01-3.82223E+01
    7.18000E-01-3.45813E+01
    7.68000E-01-3.10793E+01
    8.18000E-01-2.77155E+01
    8.68000E-01-2.44874E+01
    9.18000E-01-2.13888E+01
    9.68000E-01-1.84182E+01
    1.01800E+00-1.55690E+01
  • 相対誤差と高さh2の関係 http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuhakoonsitekatagosa.png
    • 縦軸:相対誤差,横軸:h2(m)

鋼材箱型断面h2

  • b1=0.84m,b2=0.009m
  • h1=0.009m,h2=0.18mから0.05m刻みで増加させた
  • オンサイトのh2初期値=0.5m
    h2(m)相対誤差(%)
    6.80000E-02-5.45343E+00
    1.18000E-01-3.88840E+00
    1.68000E-01-3.48379E+00
    2.18000E-01-3.25848E+00
    2.68000E-01-3.06076E+00
    3.18000E-01-2.86775E+00
    3.68000E-01-2.66288E+00
    4.18000E-01-2.44449E+00
    4.68000E-01-2.20650E+00
    5.18000E-01-1.95315E+00
    5.68000E-01-1.67852E+00
    6.18000E-01-1.38560E+00
    6.68000E-01-1.06950E+00
    7.18000E-01-7.40961E-01
    7.68000E-01-3.85094E-01
    8.18000E-01-1.02293E-02
    8.68000E-013.84346E-01
    9.18000E-017.99488E-01
  • 相対誤差と高さh2の関係 http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuhakokatahgosa.png
    • 縦軸:相対誤差,横軸:h2(m)

ccx

鋼材箱型断面h2

  • cowperb=0.849(m)
  • 厚さ=9.0E-03(m)
    • ティモシェンコ理論値とfortran calculixの比較
      • 赤線:ティモシェンコ,緑線:fortran calculix http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuhakokatahtawami.png
      • 縦軸:たわみ(m),横軸:h2(m)
    • 相対誤差とたわみ http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuhakokatahgosa.png
      • 縦軸:相対誤差,横軸:h2(m)
h2(m)相対誤差(%)
6.80000E-02-5.45343E+00
1.18000E-01-3.88840E+00
1.68000E-01-3.48379E+00
2.18000E-01-3.25848E+00
2.68000E-01-3.06076E+00
3.18000E-01-2.86775E+00
3.68000E-01-2.66288E+00
4.18000E-01-2.44449E+00
4.68000E-01-2.20650E+00
5.18000E-01-1.95315E+00
5.68000E-01-1.67852E+00
6.18000E-01-1.38560E+00
6.68000E-01-1.06950E+00
7.18000E-01-7.40961E-01
7.68000E-01-3.85094E-01
8.18000E-01-1.02293E-02
8.68000E-013.84346E-01
9.18000E-017.99488E-01

応急橋の片持ちモデルh2

  • nz=512で固定、桁高=0.3~0.9mmまで
    h2(m)たわみ(m)
    0.31.2162E-02
    0.46.7682E-03
    0.54.5888E-03
    0.63.4692E-03
    0.72.8055E-03
    0.82.3735E-03
    0.92.0733E-03

オンサイトの片持ちモデルh2

  • nz=512で固定、桁高=0.3~0.9mまで
    h2(m)たわみ(m)
    0.32.4269E-02
    0.41.0855E-02
    0.55.9180E-03
    0.63.6444E-03
    0.72.4355E-03
    0.81.7259E-03
    0.91.2785E-03

応急橋片持ちモデルnz

nzたわみ(m)相対誤差(%)
23.5446E-03-41.992
44.7644E-03-22.029
85.2480E-03-14.115
165.4036E-03-11.569
325.4524E-03-10.770
645.4686E-03-10.505
1285.4742E-03-10.413
2565.4758E-03-10.387
5125.4736E-03-10.379
理論値6.1105E-03

http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuoukyukataz.png

  • 相対誤差と分割数の関係

オンサイト片持ちモデルnz

nzたわみ(m)相対誤差(%)
21.9384E-03-70.196
43.8697E-03-40.502
85.1826E-03-20.316
165.6916E-03-12.489
325.8493E-03-10.065
645.8966E-03-9.3375
1285.9114E-03-9.1099
2565.9163E-03-9.0346
5125.9180E-03-9.0084
理論値6.5039E-03

http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuonsitekataz.png

  • 相対誤差と分割数の関係

salome練習

  • 梁断面は横長,正方形,縦長
  • スパンell=200×1000
  • 荷重P=10N
  • ヤング率E=3GPa,ポアソン比ν=0.3

①b=30×1000,h=5×1000(横長)

  • 理論値=2.8458E-02m
    length要素数たわみ(m)相対誤差(%)
    200003981.5654E-03-96.488
    150005143.5413E-03-87.531
    1000012566.5277E-03-77.015
    500053041.0370E-02-63.486
    2500217671.7528E-02-38.282
    12001738112.5647E-02-9.6937
    10001760112.5657E-02-9.6585
    8001848622.5674E-02-9.5986

http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahuyokonaga.png

  • 相対誤差と要素数の関係

②b=20×1000,h=20×1000(正方形)

  • 理論値=6.7187E-04m
    length要素数たわみ(m)相対誤差(%)
    200003733.5819E-04-46.688
    150005844.0795E-04-39.281
    1000017615.1320E-04-23.616
    500081285.9328E-04-11.697
    2500412346.2908E-04-6.3688
    12001907586.5535E-04-2.4588
    10003436616.6252E-04-1.3916
    8003899346.6245E-04-1.4021

http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahusei.png

  • 相対誤差と要素数の関係

③b=5×1000,h=30×1000(縦長)

  • 理論値=8.0487E-04m
    length要素数たわみ(m)相対誤差(%)
    200003805.1029E-04-36.600
    150004825.8365E-04-27.485
    1000012267.2589E-04-9.8128
    500052297.7913E-04-3.1980
    2500215107.9245E-04-1.5431
    12001490647.9837E-04-0.8758
    10001508757.9834E-04-0.81131
    8001570307.9845E-040.79764

http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/gurahutatenaga.png

  • 相対誤差と要素数の関係

メモ

  • モデルにかかわらずlenghを小さくしていくたびに理論値に近づいていく傾向があるが、断面が正方形と縦長の場合、lengthとたわみの関係のみに着目するとlengh1000のとき前後とのたわみの大小関係?がおかしくなっている。もしかしたらモデルの形、節点数や要素数と関係があるのかも(13/6/15)
  • グラフにしてみるとあまり気にならない?(13/6/17)

ccx練習(アクリル板による片持ち梁のたわみと分割数の関係)

  • 梁断面は横長,正方形,縦長の3種
  • スパンell=200mm
  • 荷重P=10N
  • ヤング率E=3GPa,ポアソン比ν=0.3
  • nx=10,ny=20で固定,nzを10~500まで

①b=30mm,h=5mm(横長)

  • 理論値=28.458mm(せん断たわみも考慮) http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/katazgurahu.png

②b=20mm,h=20mm(正方形)

  • 理論値=0.67187mm(せん断たわみも考慮) http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/kataseizgurahu.png
  • 縦軸:たわみ(mm),横軸:nz

③b=5mm,h=30mm(縦長)

  • 理論値=0.80487mm(せん断たわみも考慮) http://www.str.ce.akita-u.ac.jp/~gotouhan/uemura/katatezgurahu.png
  • 縦軸:たわみ(mm),横軸:nz

ccx練習

  • 梁断面は横長,正方形,縦長の3種
  • スパンell=150mm
  • 荷重P=20N
  • ヤング率E=200GPa,ポアソン比ν=0.3

b=50mm,h=5mm片持ち梁グラフ

  • 理論値=0.21600624mm http://www.str.ce.akita-u.ac.jp/~gotouhan/oyama/katazgurahu.png

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2020-01-20 (月) 12:34:59