Ìܼ¡
2018ǯÅÙ
- ¶âÍË13:00¤«¤é¥¼¥ß¡Ê3ǯ¤Ï»²²Ã¼«Í³¡Ë
- ¶âÍË14:30¤«¤éÁϤ¹©Ë¼¼Â½¬¡Ê3ǯ¤Ïɬ½¤¡Ë
- 11/23(¶â)¤Î¥¼¥ß¤ÏµÙ¤ß
3ǯÀ¸
2/1(½ÕµÙ¤ß¤Î²ÝÂê)
- 10mm$\times$10mm$\times$100mm¤ÎΤξå1mm¤È²¼1mm¤ò¹Ýºà¤ËÊѤ¨¤Æ¡¢¤¿¤ï¤ß¤ò·×»»
- ¹Ýºà¤Ï¥ä¥ó¥°Î¨¡§206GPa, ¥Ý¥¢¥½¥óÈæ¡§0.3
- ÌÚºà¤Ï°ÛÊýÀ¤Î¤È¤¤ÈƱ¤¸ºàÎÁ
- ¹´Â«¾ò·ï¤ÈºÜ²Ù¾ò·ï¤âƱ¤¸¡ÊÃæÎ©¼´¾å¤Ë¹¦¤ò¤¢¤±¤ë¤ä¤êÊý¡Ë
- ¼ê·×»»¤Ç$E_{ÌÚ}I_{ÌÚ}+E_{¹Ý}I_{¹Ý}$¤òµá¤á¡¢¥Æ¥£¥â¥·¥§¥ó¥³Î¤Τ¿¤ï¤ß¤È½éÅùÎ¤Τ¿¤ï¤ß¤òµá¤á¤ë
- Salome-Meca¤Î¤¿¤ï¤ß¤¬¡¢Timoshenko¤ä½éÅùΤȤɤ줯¤é¤¤¹ç¤¦¤«¡¢¾å²¼¤ò¸Ç¤¤¤â¤Î¤Ç¶´¤ó¤À¥µ¥ó¥É¥¤¥Ã¥ÁΤǤϡ¢¤»¤óÃÇÊÑ·Á¤¬ÍÞÀ©¤µ¤ì¤ë¤Î¤«¤à¤·¤íÁýŤµ¤ì¤ë¤Î¤«¤Ë¤Ä¤¤¤Æ¹Í»¡
- ²òÀÏÊýË¡¡¢²òÀÏ·ë²Ì¡¢¹Í»¡ÆâÍÆ¤ò¡¢$\TeX$¤ÎÅìËÌ»ÙÉô³µÍ×¥¹¥¿¥¤¥ë¤Ç¤Þ¤È¤á¤ë¡£
1/11(²ÝÂê)
- º£¤Þ¤Ç¤ÎÁêÂÐ¸íº¹¤Î¥°¥é¥Õ¤òÀµÉé¤ò¶èÊ̤·¤Æºî¤êľ¤¹
- ºÇ½é¤Ëºî¤Ã¤¿ÊÒ»ý¤ÁΤÎcomm¥Õ¥¡¥¤¥ë¤ò¥¨¥¯¥¹¥Ý¡¼¥È¤·¤Æ¤ª¤¯
- ºÇ½é¤Ëºî¤Ã¤¿ÊÒ»ý¤ÁÎÂ¤ÈÆ±¤¸
- ÃÇÌÌÀÑ:10mm$^2$
- Ťµ:100mm
¤Ç¡¤¤Ê¤ë¤Ù¤¯¹äÀ¤ÎÂ礤¤ÊÒ»ý¤ÁΤòºî¤ë¡¥
- ÃÇÌ̤Ï100mm$^2$¤Ç¤¢¤ì¤Ð¡¤·Á¾õ¤Ï¼«Í³¡ÊI·Á¤È¤«È¢·¿¤È¤«±ß·Á¤È¤«¡Ë
- Salome¾å¤ÇÃÇÌÌÀѤòÄ´¤Ù¤ë¤Ë¤Ï¡¢Geometry¤Î¥ª¥Ö¥¸¥§¥¯¥È¥Ö¥é¥¦¥¶¡¼¤ÇÌ̤Υª¥Ö¥¸¥§¥¯¥È(Face_3¤È¤«)¤òÁªÂò¤·¡¢¡Ö·×¬¡×¥á¥Ë¥å¡¼¤Î¡Ö´ðËÜ¥×¥í¥Ñ¥Æ¥£¡×¤òÁª¤Ö¤È¥µ¡¼¥Õ¥§¥¹¤Î¤È¤³¤í¤ËÌÌÀѤοôÃͤ¬½Ð¤ë¡Ê¤¿¤Ö¤ó¡Ë
- ¤¿¤À¤·ÃÇÌ̤ϡ¤ºÇ½é¤Ëºî¤Ã¤¿ÊÒ»ý¤ÁΤÎÃÇÌÌ¤ÈÆ±¤¸ºÂɸÌÌ(xyÌ̤Ȥ«yzÌ̤Ȥ«)¤Ëºî¤ë
- 1/25¤Ï¡¤¸åÆ£¤ÏÉԺߤÀ¤¬¡¤¼«Ê¬¤Çºî¤Ã¤¿ÊÒ»ý¤ÁΤˡ¤comm¥Õ¥¡¥¤¥ë¤òÆÉ¤ß¹þ¤ó¤Ç¡¤²Ù½Å¤ò³Ý¤±¤Æ¤¿¤ï¤ß¤ò·×»»¤Ç¤¤ë¤«³Æ¼«¤ä¤Ã¤Æ¤ß¤ë¡¥
12/21(4ǯ¡¢M2¤ÎÃæ´Öȯɽ)
12/21¤Ï4ǯ¡¢M2¤ÎÃæ´Öȯɽ¤Ê¤Î¤Ç¥¼¥ß¤ÏµÙ¤ß¡£¼¡²ó¤Ï1/11(¶â)¤À¤¬¡¢3ǯÀ¸¤Ï¡¢ÅìËÌ»ÙÉô³µÍ×¥¹¥¿¥¤¥ë(sibup2.tex)¤ò»È¤Ã¤Æ¡¢¤³¤ì¤Þ¤Ç¥¼¥ß¤Ç¹Ô¤Ã¤¿¼Â½¬¤ÎÆâÍÆ¤ò³Æ¼«¤Þ¤È¤á¤ëºî¶È¤ò³«»Ï¤¹¤ë¤³¤È¡Ê2¥Ú¡¼¥¸°Ê¾å¤Ç¹½¤ï¤Ê¤¤)¡£
12/14(²ÝÂê)
Salome-Meca¤Î¥á¥Ã¥·¥å¿Þ¤Ê¤É¤òGIMP¤Ç¥¹¥¯¥ê¡¼¥ó¥·¥ç¥Ã¥È¤·¤Æeps¥Õ¥¡¥¤¥ë¤Ë¥¨¥¯¥¹¥Ý¡¼¥È¤·¡¢¤½¤ì¤òsibup2.tex¤ËޤêÉÕ¤±¤ë¡£
12/7(²ÝÂê)
gnuplot¤Î¿Þ¤ËÌð°õ¤äÀâÌÀ¤ò²Ã¤¨¤ÆLaTeX¤Ë¼è¤ê¹þ¤à(PS/LaTeXÊÔ)¤Î¤ä¤êÊý¤Ç¡¢
º£¤Þ¤ÇÉÁ¤¤¤Æ¤¤¿ÁêÂÐ¸íº¹¤Î¥°¥é¥Õ¤Ë¼´¤ä¥¿¥¤¥È¥ë¤äÌð°õ¤äÀâÌÀ¤ò²Ã¤¨¤Æ¡¢zu.tex¤Ë¼è¤ê¹þ¤à¡£
pdf²½¤·¤¿²èÌ̤òwiki¤ËޤêÉÕ¤±¤¿¤¤¾ì¹ç¤Ï¡¢A4¤Î¤Þ¤Þ¤À¤È¤Ç¤«¤¯¤Ê¤ë¤Î¤Ç¡¢¿Þ1Ë示¤Ä¤È¤«¡¢¥¹¥¯¥ê¡¼¥ó¥·¥ç¥Ã¥È¤·¤ÆÅ½¤êÉÕ¤±¤ë¡Ê¤³¤ì¤Ï¡¢¤ä¤Ã¤Æ¤ß¤¿¤¤¿Í¤À¤±¤Ç¤¤¤¤¤±¤É¡Ë¡£
11/30(²ÝÂê)
LaTeX ¤È XHTML ¤ò°ì½ï¤Ë³Ø¤Ü¤¦
¤Îweb1w.tex¤«¤éweb4w.tex¤Þ¤Ç¤ò½ñ¤´¹¤¨¤Æ¥³¥ó¥Ñ¥¤¥ë¤·¡¢¤³¤³¤Ç»È¤ï¤ì¤Æ¤¤¤ë$\TeX$¥³¥Þ¥ó¥É¤Î½ñ¤Êý¤Ë´·¤ì¤ë¡£
11/16(²ÝÂê)
- $z$¼´¤òμ´Êý¸þ¤È¤¹¤ë¾ì¹ç¡¢$E_{x}=E_{y}=\frac{E_{z}}{25}, G=\frac{E_{z}}{15}$¤Îľ¸ò°ÛÊýÀºàÎÁ¤Ç²ò¤¤¤Æ¤ß¤ë
- ´ö²¿³Ø¥â¥Ç¥ë¤Ï¡¢Àè½µ¤ÎÃæÎ©¼´¾å¤Ë¹¦¤ò¶õ¤±¤Æ¹´Â«Àþ¤ÈºÜ²ÙÀþ¤òÀߤ±¤¿¤â¤Î
- ¥Æ¥£¥â¥·¥§¥ó¥³Î¤ÎÍýÏÀÃÍ$v=\frac{P\ell^{3}}{48E_{z}I}+\frac{P\ell}{4kGA}$¤ËÂФ¹¤ëÁêÂÐ¸íº¹¤òµá¤á¤ë¡£
- ĹÊý·ÁÃÇÌ̤Τ»¤óÃÇÊäÀµ·¸¿ô$k=\frac{5}{6}$
- Í×ÁÇ¿ô¤ÈÁêÂÐ¸íº¹¤Î´Ø·¸¤ò¥°¥é¥Õ¤Ë¤·¤ÆÂ´ÏÀÆü»ï¤Ë¥¢¥Ã¥×
11/9(²ÝÂê)
- ÌÜŪ¡§ÎÂ¥â¥Ç¥ë¤È¶á¤¤¾ò·ï¤Ë¤¹¤ë¤¿¤á¤Ë¡¢ÃæÎ©Ì̾å¤ÇÀþ¹´Â«¡¢ÀþºÜ²Ù¤·¤¿¤¤¡£
- ʪÂÎÆâÉô¤ÎÀþ¤äÅÀ¤ËºÜ²Ù¤¹¤ë¤È¥¨¥é¡¼¤¬½Ð¤ë¤è¤¦¤Ê¤Î¤Ç¡¢ÃæÎ©ÌÌÃæ±û°ÌÃ֤ˡ¢
¹â¤µ0.1mm, Ťµ0.2mm, ±ü¹Ô¤10mm¤ÎľÊýÂΤ馤ò¶õ¤±¤ë¡ÊÄìÌ̤¬ÃæÎ©Ì̤˹礦¤è¤¦¤Ë¡Ë
- ¤½¤·¤Æ¡¢¹¦¤ÎÄìÌ̤ο¿¤óÃæ¤ÎÀþ¤Ë±è¤Ã¤ÆÀþºÜ²Ù¤¹¤ë¡£
- ¹´Â«Àþ¤Ë¤Ä¤¤¤Æ¤â¡¢Æ±ÍͤÎľÊýÂΤ馤ò¶õ¤±¡Ê¾åÌ̤¬ÃæÎ©Ì̤ȹ礦¤è¤¦¤Ë¡Ë¡¢
¹¦¤Î¾åÌ̤ο¿¤óÃæ¤ÎÀþ¤Ë±è¤Ã¤Æ¹´Â«¤¹¤ë¡Êñ½ã»Ù»ý¡Ë
- ¤½¤ì¤Ç¤Á¤ã¤ó¤È·×»»¤Ç¤¤ë¤è¤¦¤Ê¤é¡¢
- Ä¥¤ê½Ð¤·¤¢¤ê¤ÎΤˤĤ¤¤Æ¡¢
¥á¥Ã¥·¥åŤµ6, 5, 4, 3, 2, 1.5, 1.3, 1, 0.7, 0.5¤Î¾ì¹ç¤ÎÃæ±û¤ÎÊѰ̡ʺܲÙÀþξü¤ÎÊ¿¶Ñ¡Ë¤È¼ê·×»»¤ÎÁêÂÐ¸íº¹¤ÈÍ×ÁÇ¿ô¤Î´Ø·¸¤ò¥×¥í¥Ã¥È
- Ä¥¤ê½Ð¤·¤¬¤Ê¤¤Î¤ˤĤ¤¤Æ¤âÃæ±û¤Ë¹¦¤ò¶õ¤±Æ±Íͤη׻»¡Êξü¤ÎÀþ¹´Â«Éôʬ¤ÏɽÌ̤˽ФƤ¤¤ë¤Î¤Ç¹¦¤ò¤¢¤±¤ëɬÍפϤʤ·¡Ë
11/2(²ÝÂê)
- ¤³¤³¤ÎÍ×ÎΤǥ¹¥Ñ¥ó100mmÁ´Ä¹120mm¤Îñ½ãΤò¥â¥Ç¥ë²½¤·¡¢
Á°²ó¤Î²ÝÂê¤ÈƱÍͤ˥á¥Ã¥·¥åŤµ8, 7, 6, 5, 4, 3, 2, 1.5, 1, 0.5¤Î¾ì¹ç¤Î
Ãæ±û¤ÎÊѰÌ(£´¤¹¤ß¤ÎÊ¿¶Ñ¡Ë¤ò·×»»¤¹¤ë¡£
- Í×ÁÇ¿ô¤ò²£¼´¤Ë¡¢$\frac{P\ell^{3}}{48EI}$¤ËÂФ¹¤ëÁêÂÐ¸íº¹¤ò½Ä¼´¤Ë¤·¤Ægnuplot¤ÇÉÁ¤¤¤¿¥°¥é¥Õ¤ò¥µ¡¼¥Ð¡¼¤Ë¥¢¥Ã¥×¤·¤Æ¼«Ê¬¤Î´ÏÀ¥Ú¡¼¥¸¤ËޤêÉÕ¤±¤ë¡£
- Ťµ¤Á¤ç¤¦¤É100mm¤Î¥â¥Ç¥ë¤òºîÀ®¤·¡¢¤½¤Îξü²¼Â¦¤òÀþ¹´Â«¤·¤¿Ã±½ãΤˤĤ¤¤Æ¡¢¥á¥Ã¥·¥åŤµ1mm¤Î·×»»¤ò¤¹¤ë¡£Î¾Ã¼¤Ë10mm¤º¤Ä¤ÎÄ¥¤ê½Ð¤·¤Î¤¢¤ë¾ì¹ç¤È¤Ê¤¤¾ì¹ç¤È¤Ç¡¢¤É¤ì¤À¤±Åú¤¨¤Ë°ã¤¤¤¬½Ð¤ë¤«¡¢¤É¤Á¤é¤¬$\frac{P\ell^{3}}{48EI}$¤Ë¶á¤¤Ãͤˤʤ뤫¡¢¤½¤ÎÍýͳ¤Ë¤Ä¤¤¤Æ¹Í»¡¤¹¤ë¡£
10/26(²ÝÂê)
- ¥á¥Ã¥·¥åŤµ0.5, 1.5, 3,5,6,7¤âÄɲ䷤ơ¢É½¤ò½ñ¤Ä¾¤¹¡£
- Í×ÁÇ¿ô¡¢ÊѰ̤Υ°¥é¥Õ¤òÉÁ¤Ä¾¤·¡¢¥¢¥Ã¥×¥í¡¼¥É¤·¤Æ¡¢wiki¤ËޤêÉÕ¤±¤ë¡£
10/19(²ÝÂê)
- Salome-Meca¤ÇÊÒ»ý¤ÁΤò²ò¤¡¢¼«Í³Ã¼4¤¹¤ß¤ÎÊѰ̤ÎÊ¿¶Ñ¤òµá¤á¤ë
- ¥á¥Ã¥·¥å¤ÎŤµlocal length=1, 2, 4, 8¤Î¾ì¹ç¤Ë¤Ä¤¤¤ÆÆ±Íͤ˷׻»
- ¤½¤ì¤¾¤ì¤Î¥á¥Ã¥·¥åŤµ¤Î¾ì¹ç¤ÎÍ×ÁÇ¿ô¤â¥á¥â¤¹¤ë
- ¤½¤ì¤ò³Æ¼«¤Î´ÏÀÆü»ï¤Ëɽ¤Ë¤·¤Æ¤Þ¤È¤á¤ë
- ¼ê·×»»¤Çµá¤á¤¿ÊÒ»ý¤ÁΤÎÊѰ̤ÈÈæ³Ó¤¹¤ë
- üËö¤«¤é¡¢UNIX¥³¥Þ¥ó¥É¤Ç¼«Ê¬¤¬Êݸ¤·¤¿Salome¤Î¥Õ¥¡¥¤¥ë¤¬¤É¤³¤ËÊݸ¤µ¤ì¤Æ¤¤¤ë¤«¤ò³Îǧ¤·¤Æ¤ª¤¯¡£
¥á¥Ã¥·¥åŤµ | Í×ÁÇ¿ô | ÀèüÊÑ°Ì | ÁêÂÐ¸íº¹($\frac{salome-¼ê·×»»}{¼ê·×»»}$) |
- ¥ä¥ó¥°Î¨¡§6GPa
- ¥Ý¥¢¥½¥óÈæ¡§0.4
- 10mm$\times$10mm$\times$100mm
- Àèü²Ù½Å¡§100N
10/12¡Ê²ÝÂê¡Ë
- ¹½Â¤¸¦wiki¤Ë´ÏÀÆü»ï¤òºîÀ®
- ¥¿¥Ã¥Á¥¿¥¤¥×¡ÊÍè½µ¤Þ¤Ç¤Ç¤¤ë¤è¤¦¤Ë¡Ë
¥¿¥Ã¥Á¥¿¥¤¥×¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
- °Ê¾å¤ò3ʬ°ÊÆâ¤òÌÜɸ¤Ë¡£
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£Enter¥¡¼¤Ï(¼ê¼ó¤ò²óž¤µ¤»¤Æ)±¦¼ê¤Î¾®»Ø¤Ç¡£
»Ø¤¬ÆÏ¤¯¸Â¤ê¤ÏÏÓ¤ÎÉôʬ¤Ï´ù¤Ë¤¯¤Ã¤Ä¤±¤¿¾õÂ֤ǻشØÀá¤Î¶Ê¤²¿¤Ð¤·¤È¼ê¼ó¤Î²óž¤Î¤ß¤Î
¼«Í³ÅÙ¤ò»È¤¦¡£¼ê¼ó¤äÏÓ¤ò»ý¤Á¾å¤²¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¡£
ãÀ®ÌÜɸ
- ÅùÊýÀºàÎÁ¤ÎľÊýÂÎΤò3D¥â¥Ç¥ë²½¤·¡¢Salome-Meca¤Ç¤¿¤ï¤ß¤òµá¤á¤Æ¡¢ ¼ê·×»»¤ÈÈæ³Ó
- Í×ÁÇ¿ô¤ÈÁêÂÐ¸íº¹¤Î´Ø·¸¤ògnuplot¤Ç¥Õ¥é¥Õ²½
- °ÛÊýÀºàÎÁ¤ÎľÊýÂÎΤò3D¥â¥Ç¥ë²½¤·¡¢Salome-Meca¤Ç¤¿¤ï¤ß¤òµá¤á¤Æ¡¢ ¼ê·×»»¤ÈÈæ³Ó
- ¹Ýºà¤ÈÌÚºà¤Î¹çÀ®Î¤ò3D¥â¥Ç¥ë²½¤·¡¢Salome-Meca¤Ç¤¿¤ï¤ß¤òµá¤á¤Æ¡¢ ¼ê·×»»¤ÈÈæ³Ó
- ¤â¤·Í¾Íµ¤¬¤¢¤ì¤Ð¡¢ÅùÊýÀºàÎÁ¤Î´ÝËÀ¤ò3D¥â¥Ç¥ë²½¤·¡¢¹ßÉúÅÀ¤òÍ¿¤¨¤Æ°ú¤ÃÄ¥¤ë¤Î¤òÃÆÁºÀ¤Ç·×»»¡Ê¥°¥é¥Õ¤ËÉÁ¤¯¡Ë
- ¤³¤ì¤é¤Î·ë²Ì¤òLaTeX¤È¤¤¤¦ÁÈÈǥġ¼¥ë¤Ç´ÏÀ³µÍ×·Á¼°¤Ë¤Þ¤È¤á¤Æ¡¢ ÁϤ¹©Ë¼¼Â½¬¤ÎÀ®²Ìʪ(pdf¥Õ¥¡¥¤¥ë)¤È¤·¤ÆÄó½Ð
´ÏÀ¥Æ¡¼¥Þ
- CLT¤Î¶Ê¤²»î¸³¡ÊÈïʤ¤µ¤ì¤¿¤â¤Î´Þ¤à¡Ë¤È¤½¤ì¤Î²òÀÏ(Salome¤ÈMarc)
- ¥é¥°¥¹¥¯¥ê¥å¡¼¤ÇÏ¢·ë¤µ¤ì¤¿CLT¤È¥³¥ó¥¯¥ê¡¼¥È¤Î°ú¤È´¤»î¸³¤È¤½¤Î²òÀÏ
- I·å¤Ë¤Î¤»¤¿CLT¾²ÈǤËËɸîºô¤ò¤Ä¤±¤Æ¤Î¶Ê¤²»î¸³¤È¤½¤ì¤Î²òÀÏ(Salome¤ÈMarc)
- ÅÄÂô¸Ð¤ÎCLT¾²ÈÇI·å¶¶¤Î¥È¥é¥Ã¥¯ºÜ²Ù»î¸³¤È¤½¤Î²òÀÏ
- ¥×¥ì¥¹¥È¥ì¥¹ÌÚÈ¢·å¶¶¤Î²òÀÏ¡ÊÂçÃÓ¤Î2¥Ü¥Ã¥¯¥¹¥¿¥¤¥×¡¢·Ñ¤®¼êÉô¤Î±þÎÏ¡Ë
- ÍæÀûÀÞ¤ê±ßÅû¤Î¤Ð¤Í¹äÀ¡ÊÀޤꤿ¤¿¤ß¤ä¤¹¤µ¤È¼«Î©¤·¤ä¤¹¤µ¤Î´Ø·¸¡Ë
5/7
¥Õ¥©¡¼¥È¥é¥óÆþÌç¤Î²ÝÂê1¤«¤é3¤Þ¤Ç¤ò¤ä¤Ã¤Æ¤ß¤ë(½ÉÂê)¡£
4/23
- vi¤Î»È¤¤Êý
- vi¤Ç¡¢2018ǯ¤Î¥«¥ì¥ó¥À¡¼¤òºî¤ë
- vi¤Ç¥Ñ¥¹¥«¥ë¤Î»°³Ñ·Á¤ò½ñ¤¯(6Ãʰʾå)
- vi¤ÇÆüËܸì¤ÎŬÅö¤Êʸ¾Ï¡ÊÆüµ¤È¤«¡©¡Ë¤ò½ñ¤¯Îý½¬¡£
1·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
1
/ \
1 1
/ \ / \
1 2 1
/ \ / \ / \
1 3 3 1
4/17ÆâÍÆ
½ÉÂê
- ¥¿¥Ã¥Á¥¿¥¤¥×¤Ï¤Á¤ã¤ó¤È¤Ç¤¤ë¤è¤¦¤Ë¡Ê¤½¤¦¤Ç¤Ê¤¤¤ÈÍè½µ¤Îvi¤Ç¶ìÏ«¤¹¤ë¡Ë
- ¤³¤³¤ÎUNIX¥³¥Þ¥ó¥É¤Ï¤Ò¤ÈÄ̤ê»È¤¨¤ë¤è¤¦¤Ë¤Ê¤ë¡£
- echo, >, >>, cat ¥³¥Þ¥ó¥É¤ò»È¤Ã¤Æ2018ǯÅÙ¥«¥ì¥ó¥À¡¼¤òºî¤ë¡£
¼ê½ç
echo "Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ" >4gatu
echo " 1 2 3 4 5 6 7" >>4gatu
echo " 8 9 10 11 12 13 14">>4gatu
¤ß¤¿¤¤¤Ë¤·¤Æ¡¢5gatu, 6gatu,.....,1gatu, 2gatu, 3gatu ¤òºîÀ®
cat 4gatu 5gatu 6gatu .......3gatu >cal2018
cat cal2018¤Ç³Îǧ
2017ǯÅÙ
- ¸å´ü¤Ï¶âÍË13:00¤«¤é
- 1½µ´Ö¤Î¿ÊĽ¾õ¶·¤È¼¡¤Î1½µ´Ö¤Î·×²è¤òÊó¹ð
- 14:00¤«¤éÁϤ¹©Ë¼¤Ê¤Î¤Ç¡¢¥Ñ¥½¥³¥ó¤Ï3ǯÀ¸¤Ë»È¤ï¤»¤ë¤È¤È¤â¤Ë¡¢ÅÔ¹ç¤Îµö¤¹¸Â¤ê¡¢3ǯ¤ÎÊä½õ¡ÊSalome2017¡Ë
- Ubuntu¤Ëkouzou¥æ¡¼¥¶¡¼¤Î¾¤Ësouzou¥æ¡¼¥¶¡¼¤òºî¤ê¡¢3ǯÀ¸¤Ë¤Ï¤½¤Á¤é¤ò»È¤ï¤»¤ë
8·î°Ê¹ß¤ÎͽÄê
- 8/22(²Ð)13:00¿ÊĽ³Îǧ
- 9/22(¶â)13:00Ãæ´Öȯɽ
- ´ÏÀ¤ÈƱ¤¸·Á¼°¤Ç´ÏÀ³µÍס¢È¯É½¥¹¥é¥¤¥É¤òºîÀ®¡£
- ´ÏÀ¤ÈƱ¤¸»þ´ÖÇÛʬ(6ʬ¤À¤Ã¤¿¤«¡©¡Ë¤Çȯɽ¡£
- ´ÏÀ³µÍפϡ¢
- »ÙÉô¸¶¹Æ ¸«ËÜ¥Õ¥¡¥¤¥ëLinuxÍÑUTF-8ÈÇ
9/15¤«20¤Ë¡¢´ä¼êÂç³ØÅÚÌڤȤΥ½¥Õ¥È¥Ü¡¼¥ëÂç²ñ¤¬½©ÅĤǤ¢¤ê¤Þ¤¹¡£
¤³¤ì¤â¤Ç¤¤ë¸Â¤ê»²²Ã¤·¤Æ¤Û¤·¤¤¤È»×¤¤¤Þ¤¹¡£
´ä¼êÂç³ØÅÚÌڤζµ¿¦°÷¡¢³ØÀ¸¤¿¤Á¤È¤Î¸òή¤¬ÌÜŪ¤Ê¤Î¤Ç¡¢
¥½¥Õ¥È¥Ü¡¼¥ë¤Ï¤Ç¤¤Ê¤¯¤Æ¤â¤è¤¯¤Æ¡¢
¤½¤Î¸å¤Îº©¿Æ²ñ¤¬¼çÌÜŪ¤Ç¤¹¡£
5/22(¸ÄÊ̲ÝÂê)
- º£Ä®¡§5/15¤Î²ÝÂê¤Þ¤Ç¤Ç¤¤ë¤è¤¦¤Ë¤¹¤ë
- À§ÌÚºà¤È¹ÝÈĤΥµ¥ó¥É¥¤¥Ã¥ÁΤò¥â¥Ç¥ë²½¤·¤Æ²ò¤¤¤Æ¤ß¤ë
- ´ØÄÍ¡§Å¬Åö¤ÊΩÂΤÎG-code¤òºîÀ®¤·¤Æ3D¥×¥ê¥ó¥¿¡¼¤Ç°õºþ¤·¤Æ¤ß¤ë
5/15
- gFTP¤Çk2¥µ¡¼¥Ð¡¼¤ästr¥µ¡¼¥Ð¡¼¤Ë¥¢¥¯¥»¥¹¤·¤Æ¥Õ¥¡¥¤¥ë¤Î¥¢¥Ã¥×¥í¡¼¥É¤ä¥À¥¦¥ó¥í¡¼¥É¤¬¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤ë
- 2017¥Ç¥£¥ì¥¯¥È¥ê¤ÎÃæ¤Ë¼«Ê¬ÍѤΥǥ£¥ì¥¯¥È¥ê¤ò¤Ä¤¯¤ë
- Á°²ó¤Î·×»»·ë²Ì¤ò¤³¤Î¥Ú¡¼¥¸¾å¤ËɽÅù¤Ç½ñ¤¹þ¤à
- °ÛÊýÀºàÎÁ¤Ë¤·¤ÆÆ±¤¸·×»»¤ò¤ä¤Ã¤Æ¤ß¤ë
- $E_{zz}=6$GPa, $E_{xx}=E_{yy}=\frac{E_{zz}}{25}$
- $G_{xy}=G_{yz}=G_{zx}=\frac{E_{zz}}{15}$
- ¥Ý¥¢¥½¥óÈæ
- Àηë²Ì
- ´ØÄͤηë²Ì
5/8
- 10mm¡ß10mmÃÇÌ̤γѺà¡Ê¥ä¥ó¥°Î¨¡§6GPa, ¥Ý¥¢¥½¥óÈæ¡§0.3¡Ë¤Îñ½ãÎ¤Τ¿¤ï¤ß¤òµá¤á¤ë
- ½éÅùÎÂ($\frac{P\ell^{3}}{48EI}$)¡¢¥Æ¥£¥â¥·¥§¥ó¥³ÎÂ($\frac{P\ell^{3}}{48EI}+\frac{P\ell}{4kGA}$)¤ËÂФ¹¤ëÁêÂÐ¸íº¹¤òµá¤á¤ë¡£
- FEM¤Î¤¿¤ï¤ß¤Ïparavis¤ÇÃæ±û¤ÎºÇÂçÊѰ̤ò¸«¤ë
- ÅùÊýÀ¤Ê¤éËÜÅö¤Ï¡¢¤»¤óÃÇÃÆÀ·¸¿ô$G=\frac{E}{2(1+\nu)}$
- ĹÊý·ÁÃÇÌ̤Τ»¤óÃÇÊäÀµ·¸¿ô$k=5/6$
- ²Ù½Å¤ÏÌ̲ٽŤÇ100N.
- ¥¹¥Ñ¥óŤµ¤Ï¡¢3¿Í¤Ç¡¢100mm, 200mm, 1000mm¤òʬô¡£
- Í×ÁÇʬ³ä¤Ï¡¢Length¤¬8, 4, 2, 1
- 1¼¡Í×ÁÇ(linear)¤È2¼¡Í×ÁÇ(quadratic)
4/24ÆâÍÆ
¥Õ¥©¡¼¥È¥é¥óÆþÌç¤Î²ÝÂê1¤«¤é3¤Þ¤Ç¤ò¤ä¤Ã¤Æ¤ß¤ë(½ÉÂê)¡£
4/17ÆâÍÆ
½ÉÂê
- ¤³¤³¤ÎUNIX¥³¥Þ¥ó¥É¤Ï¤Ò¤ÈÄ̤ê»È¤¨¤ë¤è¤¦¤Ë¤Ê¤ë¡£
- vi¤Ç¡¢2017ǯ¤Î¥«¥ì¥ó¥À¡¼¤òºî¤ë
- vi¤Ç¥Ñ¥¹¥«¥ë¤Î»°³Ñ·Á¤ò½ñ¤¯(6ÃÊ)
1·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
1
/ \
1 1
/ \ / \
1 2 1
/ \ / \ / \
1 3 3 1
2016ǯÅÙ
6/13¤Þ¤Ç
- ±þÎϤò½Ä¼´(z)¤Ë¤·¤Æ½ñ¤´¹¤¨¤ë
- ÃÇÌÌ(z=0)¤ò3¼¡¸µ¥×¥í¥Ã¥È¤Ë°ì½ï¤Ë¥×¥í¥Ã¥È¤¹¤ë
- ľÊýÂÎÍ×ÁǤǡ¢¸ÇÄêü¤«¤é1Í×ÁǤȤʤê¤ÎÃÇÌ̤αþÎÏʬÉۤϡ¢¤É¤ì¤¯¤é¤¤ÊѤï¤ë¤«
- Î¤ο¿¤óÃæ¤ÎÃÇÌ̤αþÎÏʬÉۤϤɤ¦¤«¡Ê°Ê¾å¤Î3²Õ½ê¤òÈæ³Ó¡Ë
- ¼ê·×»»$\sigma=\frac{M}{I}y$¤È¤É¤ì¤¯¤é¤¤¹ç¤¦¤«¡£¼ê·×»»¤Çµá¤Þ¤ëÌ̤ò3¼¡¸µ¥×¥í¥Ã¥È¤Ë¤¢¤ï¤»¤Æ¥×¥í¥Ã¥È¡£
6/6
gnuplot¤òµ¯Æ°¤·¤Æ
set term png
set output 'gazou.png'
splot 'data' w l
- eog gazou.png¤Çgazou.png¤ò³Îǧ¡£
- gftp¤Çstr¤Îgotouhan¤Ë¥¢¥¯¥»¥¹
- FTP¢ªPreference¢ªFTP¢ªPassive¤Î¥Á¥§¥Ã¥¯¤ò³°¤·¤Æ¤ª¤¯
- º¸Â¦¤¬¥í¡¼¥«¥ë¡Ê¼«Ê¬¤ÎPC¡Ë¡¢±¦Â¦¤¬¥µ¡¼¥Ð¡¼
- ¥µ¡¼¥Ð¡¼Â¦¤Îpublic_html¤ÎÃæ¤¬¥¦¥§¥Ö¾å¤Ë¸ø³«¤µ¤ì¤Æ¤ë
- public_html/j2016/¤ÎÃæ¤Ë³Æ¼«¤Î¥Ç¥£¥ì¥¯¥È¥ê¤ò¤Ä¤¯¤ë¡Êº¹¤·»Ù¤¨¤Ê¤±¤ì¤Ð¡¢Ã¯¤Î¥Ç¥£¥ì¥¯¥È¥ê¤«¤ï¤«¤ë¤è¤¦¤Ê¥Ç¥£¥ì¥¯¥È¥ê̾¤Ç¡Ë
- ¤µ¤Ã¤ºî¤Ã¤¿PC¾å¤Î²èÁü¥Õ¥¡¥¤¥ë¤ò¡Ö¢ª¡×¤ò¥¯¥ê¥Ã¥¯¤·¤Æ¡¢¥µ¡¼¥Ð¡¼Â¦¤Î¼«Ê¬¤Î¥Ç¥£¥ì¥¯¥È¥ê¤Ë¥¢¥Ã¥×¥í¡¼¥É
- str¥µ¡¼¥Ð¤Îpublic_html¤Î²¼¤Ï¡¢http://www.str.ce.akita-u.ac.jp/~gotouhan/¤ÈÂбþ¤·¤Æ¤¤¤ë¡£
- ¤À¤«¤é¡¢gotouhan/j2016/gotou/¤ÎÃæ¤ËÁ÷¤Ã¤¿²èÁü¥Õ¥¡¥¤¥ë¤Ï¡¢Î㤨¤Ð¡¢
¤ß¤¿¤¤¤Ë¤½¤Î²èÁü¥Õ¥¡¥¤¥ë¤Î¥Ñ¥¹¤ò¤³¤³¤Ë½ñ¤¤³¤à¤È¡¢
¼«Æ°Åª¤Ë¥ê¥ó¥¯¤¬Å½¤é¤ì¤Æ¡¢²èÁü¤¬Å½¤êÉÕ¤±¤é¤ì¤ë¡£
5/9
Â礤µ¡¢²Ù½Å¡¢Å¬Åö¤Ç¡¢ÊÒ»ý¤ÁΤòSalome¤Çºî¤Ã¤Æ¡¢¸ÇÄêÉô¤ÈºÜ²ÙÉô¤òºî¤Ã¤Æ¡¢
¥á¥Ã¥·¥åʬ³ä¤·¤Æ¡¢ºÜ²Ù¤·¤Æ¡¢ÊѰ̤ò¸«¤ì¤ë¤«¡£
5/16
10mm¡ß10mmÃÇÌ̤γѺà¡Ê¥ä¥ó¥°Î¨¡§6GPa, ¥Ý¥¢¥½¥óÈæ¡§0.3¡Ë¤ÎÊÒ»ý¤ÁΤÎ
½éÅùΡ¢¥Æ¥£¥â¥·¥§¥ó¥³Î¤ËÂФ¹¤ëÁêÂÐ¸íº¹¤òµá¤á¤ë¡£²Ù½Å¤ÏÌ̲ٽŤÇ100N.
Ťµ¤Ï¡¢7¿Í¤Ç¡¢50mm, 100mm, 200mm, 400mm, 800mm, 1000mm, 2000mm¤òʬô¡£
Í×ÁÇʬ³ä¤Ï¡¢Length¤¬16, 8, 4, 2, 1
5/23
Àè½µ¤Î²ÝÂê¤Ç¡¢»ÍÌÌÂÎÍ×ÁǤÈΩÊýÂÎÍ×ÁǤΤ½¤ì¤¾¤ì¤ËÂФ·¤ÆÀþ·ÁÍ×ÁǤÈ2¼¡Í×ÁǤΤ½¤ì¤¾¤ì4Ä̤ê¤ò·×»»¤·¤Æ¤ß¤ë¡£
ΩÊýÂÎÍ×ÁǤÎÍ×ÁÇŤµ¤Ï¡¢2mm, 1mm, 0.5mm
4/25
½ÉÂê
¥Õ¥©¡¼¥È¥é¥óÆþÌç¤Î²ÝÂê1¤«¤é3¤Þ¤Ç¤ò¤ä¤Ã¤Æ¤ß¤ë¡£
¤ª¤Þ¤±
scratch¤ò¥¤¥ó¥¹¥È¡¼¥ë¤·¤¿¤¤¾ì¹ç
- ¥·¥¹¥Æ¥à¢ª¥·¥¹¥Æ¥à´ÉÍý¢ªSynaptic¢ª¥Ñ¥¹¥ï¡¼¥ÉÆþÎÏ
- scratch¤Ç¸¡º÷
- scratch(easy to use programming environment for ages 8 and up)¤Ë¥Á¥§¥Ã¥¯¤òÆþ¤ì¢ª¥¤¥ó¥¹¥È¡¼¥ë»ØÄꢪ¥Þ¡¼¥¯
- ŬÍÑ¢ªÅ¬ÍÑ
- ¥¤¥ó¥¹¥È¡¼¥ë¤¬½ªÎ»¤·¤¿¤é¢ª¥Õ¥¡¥¤¥ë¢ª½ªÎ»
- ¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¢ª¥×¥í¥°¥é¥ß¥ó¥°¢ªScratch ¤Çµ¯Æ°
4/18ÆâÍÆ
½ÉÂê
- ¤³¤³¤ÎUNIX¥³¥Þ¥ó¥É¤Ï¤Ò¤ÈÄ̤ê»È¤¨¤ë¤è¤¦¤Ë¤Ê¤ë¡£
- vi¤Ç¡¢2016ǯÅ٤Υ«¥ì¥ó¥À¡¼¤òºî¤ë
- vi¤Ç¥Ñ¥¹¥«¥ë¤Î»°³Ñ·Á¤ò½ñ¤¯(10ÃÊ)
4·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
5·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
1
/ \
1 1
/ \ / \
1 2 1
/ \ / \ / \
1 3 3 1
4/11ÆâÍÆ
¥Ñ¥½¥³¥ó¤ÎÁàºî
- ÆüËܸì/Ⱦ³Ñ±Ñ¿ô¤ÎÀÚ¤êÂØ¤¨¡§ÌµÊÑ´¹¥¡¼¡Êº¸¿Æ»Ø¡Ë
- ¥³¥Ô¥Ú¡§º¸¥¯¥ê¥Ã¥¯¤ÇÁªÂò¤·¤Æ¡¢¿¿¤óÃæ¥Ü¥¿¥ó¤ÇޤêÉÕ¤±
¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
- °Ê¾å¤ò3ʬ°ÊÆâ¤òÌÜɸ¤Ë¡£
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£Enter¥¡¼¤Ï(¼ê¼ó¤ò²óž¤µ¤»¤Æ)±¦¼ê¤Î¾®»Ø¤Ç¡£
»Ø¤¬ÆÏ¤¯¸Â¤ê¤ÏÏÓ¤ÎÉôʬ¤Ï´ù¤Ë¤¯¤Ã¤Ä¤±¤¿¾õÂ֤ǻشØÀá¤Î¶Ê¤²¿¤Ð¤·¤È¼ê¼ó¤Î²óž¤Î¤ß¤Î
¼«Í³ÅÙ¤ò»È¤¦¡£¼ê¼ó¤äÏÓ¤ò»ý¤Á¾å¤²¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¡£
2015ǯÅÙ
- ¥Ñ¥½¥³¥ó¥¼¥ß¡§·îÍË14:30
- ±Ñ¸ì¥¼¥ß¡§ÌÚÍË13:00¡Ê¤·¤Ð¤é¤¯¤Ï¥Ñ¥½¥³¥ó¥¼¥ß¡Ë
6/1²ÝÂê
²ÝÂê(6/22¤Þ¤Ç)
°Ê²¼¤Î¾ò·ï¤Î¥â¥Ç¥ë¤òSalome¤ÇºîÀ®¤¹¤ë¡£
FEMÍѤι´Â«Àþ¡¢ºÜ²ÙÀþ¤òºî¤Ã¤Æ¤ª¤¯¡£
¥á¥Ã¥·¥å¤ÎºÙ¤«¤µ¤ÏŬÅö¤Ë¤·¤Æ¡¢
¥¹¥Ñ¥ó100mm¤Îñ½ã»Ù»ý¶³¦¾ò·ï¤ÈÃæ±ûÀþºÜ²Ù¤Î²Ù½Å¾ò·ï¤òÆþ¤ì¤Æ¡¢
aster¤Ç²ò¤¤¤Æ¤ß¤ë¡£
- Àß·×¾ò·ï
- ÂÎÀÑ¡§12000mm$^3$°ÊÆâ
- ¥¹¥Ñ¥ó¡§100mm
- ¥ä¥ó¥°Î¨¡§2.84GPa
- ¥Ý¥¢¥½¥óÈæ:0.313
- ²Ù½Å:1000N/Éý (Àþ²Ù½Å¤Ïñ°ÌÉý¤ÎÃͤˤʤ뤫¤é)
- ¼ÂºÝ¤Ë£³D¥×¥ê¥ó¥¿¡¼¤È¤«¤Çºî¤Ã¤Æ²Ù½Å¤«¤±¤Æ¼Â¸³¤¹¤ë»þ¤Ë¡¢Ä¹¤µ¤¬¤Á¤ç¤¦¤É100mm¤À¤È¼Â¸³Âæ¤ËÃÖ¤±¤Ê¤¯¤Ê¤Ã¤Á¤ã¤¦¤Î¤Ç¡¢ÃÖ¤±¤ë¤è¤¦¤Ëºî¤Ã¤Æ¤¯¤À¤µ¤¤
- Î㤨¤Ð¡¢Î¾Ã¼¤ò10mm¤¯¤é¤¤¿¤Ð¤·¤Æ¤ª¤¯¤È¤«
- ¸¦µæ¼¼¤Î¥Û¥ï¥¤¥È¥Ü¡¼¥É¤Ë³¨¤¬½ñ¤¤¤Æ¤¢¤ë¤Î¤Ç¤½¤Î¥¤¥á¡¼¥¸¤Ç
- ñ½ã»Ù»ýÃæ±ûºÜ²Ù
- ¹´Â«Éô¡§FEM¤Ç¤ÏÀþ¹´Â«¤À¤¬¡¢¤¿¤¤¤é¤Ê¶¶Âæ¤Ë¤ª¤±¤ë¤è¤¦¤Ë
- ºÜ²ÙÉô¡§FEM¤Ç¤ÏÀþºÜ²Ù¤À¤¬¡¢10mmÄøÅÙ¤Îɳ¤ò¤«¤±¤é¤ì¤ë¤è¤¦¤Ë
³ØÀ¸ | ÂÎÀÑ(mm$^3$) | ¤¿¤ï¤ß(mm) | ¹äÀ$\frac{P\ell^{3}}{48v}$ | Èæ¹äÀ¡Ê¹äÀ/ÂÎÀÑ¡Ë | Í×ÁÇ¿ô |
ÎëÌÚ | 11956.7 | 0.73 | 28538813 | 2387 | 80404 |
¶áÆ£ | 11276 | 1.16 | 17959770 | 1593 | 32705 |
»³Æâ | 11520 | 1.06 | 19654088 | 1706 | 128687 |
µÆÃÏ | 11302 | 23. 1 | 1301348 | 115 | 35491 |
±ü¼ | 12000 | 2.395 | 8698678 | 725 | 27151 |
¹â¶¶ | 11952 | 1.25 | 16666666 | 1394 | 91074 |
´Ø¸¶ | 12000 | 1.78 | 1170120 | 975 | 14536 |
¿û¸¶ | 12000 | 3.02 | 6898455 | 575 | 9567 |
°ËÆ£ | 10682 | 2.64 | 13636363 | 1276 | 123951 |
º´Æ£ | 10920 | 3.82 | 7232633 | 662 | 175577 |
¢¬Í×ÁÇ¿ô¤ÏMeshÀڤä¿»þ¤ÎVolumes¤ÎÃͤǤ¹
- ¤â¤Î¤Å¤¯¤ê¥»¥ó¥¿¡¼ÍøÍÑ¿½ÀÁ½ñ¤ò¤â¤Î¤Å¤¯¤ê¥»¥ó¥¿¡¼¤ËÄó½Ð¤·¤Æ¤ª¤¯(³Æ¼«)
5/25ÆâÍÆ
- code-aster¤Î´ðËÜŪ¤Ê»È¤¤Êý¤òÎý½¬
- aster¤Ç¡¢·×»»¤·¤¿¤¤ÊªÂΤȤ½¤ÎʪÀÃÍ¡¦¶³¦¾ò·ïÅù¤ò»ØÄê
- E,¦Í,¹´Â«¾ò·ï,²Ù½Å¤Î¼ïÎà¤ÈÊý¸þ,²Ù½Å¤ÎÂ礤µ¤òcomm¥Õ¥¡¥¤¥ë¤Ç³Îǧ
- ²Ù½Å¤Î¼ïÎà¤Ï(½é´ü¾õÂÖ¤Î)Ì̺ܲ٤ò´ðËܤȤ·¤Æ¡¢¤ä¤ì¤ë¿Í¤ÏÀþºÜ²Ù¤Þ¤Ç»î¤·¤¿
- Eficas(aster¤Ë¤Ä¤¤¤Æ¤¤¤ëµ¡Ç½¤ÇGUI)¤Ï»È¤ï¤º¡¢vi¥³¥Þ¥ó¥É¤ÇÊÔ½¸
- ·×»»²áÄø¤òmess¥Õ¥¡¥¤¥ë¤Ç¤¶¤Ã¤Èį¤á¤¿
- ·ë²Ì¤Ï¡¢post-pro¤Ç²Ù½ÅÊý¸þ¤Î¤¿¤ï¤ß(¥°¥é¥Õ¤Èɽ¤Ç)¤È¥ß¡¼¥¼¥¹±þÎϤò¸«¤¿
½ÉÂê
- ŬÅö¤ËÊÒ»ý¤ÁΤòºî¤ë
- aster¤ÇÀèü¤Î¤¿¤ï¤ß¤ò·×»»¤¹¤ë
- ¼ê·×»»¤ò¤·¤Æ¡¢aster¤Î·ë²Ì¤ÈÈæ¤Ù¤ë
5/18ÆâÍÆ
- compound¤Ç¿Þ·Á¤òºîÀ®
- mesh¤Ç¿Þ·Á¤òÀÚ¤ë
- partition¤Ç¿Þ·Á¤ò¶èÀÚ¤ë
½ÉÂê
- ¡Å¬Åö¤ÊÊÒ»ý¤ÁΤò¤Ä¤¯¤ë(¼´Êý¸þ¤Ïµ¤¤Ë¤·¤Ê¤¯¤Æ¤âÂç¾æÉ×)
- ¢¸ÇÄêÌ̤ȹ¥¤¤Ê¤È¤³¤í¤ËºÜ²ÙÌÌ(Àþ)¤òºî¤ë
- geometory¤Ç¤ä¤ë¤Ë¤Ï
- ±¦¥¯¥ê¥Ã¥¯¤Î¡Öcriate group¡×¤È¤«¡¢¡Önew¡¡entity¡×¤Î¡Öexplode¡×¤È¤«¡¢¡Ä¡Ä
- Ê䡧ΤβٽÅÀßÄê¤Ï¡¢Æñ°×ÅÙ½ç¤Ë(´Êñ¤ÊÊý¤«¤é)
- ºÜ²Ù¾ò·ï¡¡§¾åÌÌÁ´ÂΤˡ¢ÅùʬÉÛ²Ù½Å(N/m^2)¤ò¤«¤±¤ë
- ºÜ²Ù¾ò·ï¢¡§ÎÂÀèü¤Î¾åÌ̤˺ܲ٤¹¤ë¤¿¤á¤Î¾®¤µ¤ÊÌ̤òºî¤ê(partition¢ªcriate group)¡¢¤½¤³¤ËÀèü½¸Ãæ²Ù½Å(N/m^2)¤ò¤«¤±¤ë
- ºÜ²Ù¾ò·ï£¡§Àèü¦Ì̤ˡ¢Àèü½¸Ãæ²Ù½Å(N/m^2)¤ò¤«¤±¤ë(²Ù½ÅÊý¸þ¤ò»ØÄê)
- ºÜ²Ù¾ò·ï¤¡§Î¤Υ¨¥Ã¥¸¤Ë¡¢Àèü½¸ÃæºÜ²Ù(N/m)¤ò¤«¤±¤ë(²Ù½Å¼ïÎࡦÊý¸þ¤òÄɲÃÊѹ¹)
- ºÜ²Ù¾ò·ï¥¡§ÎÂÀèü¤Ë¤¢¤ëÍ×ÁǤΥΡ¼¥É¤Ë¡¢Àèü½¸Ãæ²Ù½Å(N)¤ò¤«¤±¤ë(²Ù½Å¼ïÎࡦÊý¸þ¤òÄɲÃÊѹ¹)
- ¤Ê¤Î¤Ç¡¢¡ÈÖ¤«¤é¤ä¤Ã¤¿¤Û¤¦¤¬¤ª´«¤á¤Ç¤¹¡£¤È¤¤¤¦¤Î¤â¡¢£¡¦¤È֤ϥ³¥Þ¥ó¥É¥Õ¥¡¥¤¥ë¤Î½ñ¤´¹¤¨¤¬¤¢¤ë¤«¤é¡£¥È֤ϡ¢É¬Íפʤ¤¤«¤â¡©
- £Å¬Åö¤Ë¥á¥Ã¥·¥å¤ËÀÚ¤ë(¢¤ÎÀè¤Ë¤ä¤Ã¤Æ¤â¤¤¤¤)
- ¤Á¤Ê¤ß¤Ë¸ÇÄêÌ̤ȺٰܲÌÃ֤ϡ¢¥á¥Ã¥·¥å¤òÀڤ俤¢¤È¤Ë¤â¤Ä¤¯¤ë¤³¤È¤¬¤Ç¤¤ë
- mesh¤Ë¤Æ¡¢±¦¥¯¥ê¥Ã¥¯¤Î¡Öcriate group¡×
- ¤È¤«¤Ç¡¢¤ä¤ë¡£¤½¤ì¤«¤é¡¢ÅÀ²Ù½Å¤ò¤«¤±¤¿¤¤¤È¤¤Ï¡¢Â¿¤¯¤Î¾ì¹ç¤Ë¤Ï¡¢¥á¥Ã¥·¥åʬ³ä¸å¤Ç¤Ê¤¤¤È¤Ç¤¤Ê¤¤¤È»×¤¤¤Þ¤¹¡£
4/20ÆâÍÆ
- ¥×¥í¥°¥é¥à¸À¸ì¤Ë¤Ä¤¤¤Æ¡¢¥¹¥¯¥ê¥×¥È·Ï¡¢¥³¥ó¥Ñ¥¤¥ë·Ï
- Fortran¤Ë¤Ä¤¤¤Æ
- ²ÝÂê¡§FortranÆþÌç¤ò
¤è¤¯ÆÉ¤ß¤Ê¤¬¤é¡¢²ÝÂê1, ²ÝÂê2¤Þ¤Ç¤ò¤ä¤Ã¤Æ¤ª¤¯¡£
4/14ÆâÍÆ
- vi¤Î»È¤¤Êý ³Ð¤¨¤ë
- ½ÉÂê¡§2015ǯ¤Î¥«¥ì¥ó¥À¡¼¤òvi¤Ç½ñ¤¯¡£
4/9ÆâÍÆ
2014ǯÅÙ
´ÏÀ¥Æ¡¼¥Þ
- ÌÚ¶¶·Ï¡§3$\sim$4¿Í
- ÌÚ¹º¡¦¥³¥ó¥¯¥ê¡¼¥È¹º¤Î¤»¤óÃÇµóÆ°¡§1¿Í
- ÀÞ¤ê»æ¡¦3D·Ï¡§2$\sim$3¿Í
- Á¥Àî¡§1¿Í
- ¿·¤·¤¤²°º¬¤Ä¤ÌÚ¶¶¡§1¿Í
- ¤½¤Î¾¡§1¿Í
5/15¤Þ¤Ç¤Ë·è¤á¤ë¡£
5/26²ÝÂê
- mokuzai.f90¤ò»²¹Í¤Ë¡¢Ä¾¸ò°ÛÊýÀ¤Ç¥â¥Ç¥ë²½¤·¤¿ÌÚºà¤ÎºàÎÁÄê¿ô¤òinp¥Õ¥¡¥¤¥ë¤Ë½ñ¤¤³¤ó¤Ç¡¢ÌÚºà¤ÇÊÒ»ý¤ÁΤò²ò¤¤¤Æ¤ß¤ë¡£
- ¥Æ¥£¥â¥·¥§¥ó¥³Î¤μ°$v=\frac{P\ell^{3}}{3EI}+\frac{P\ell}{kGA}$¡Ê¤¿¤À¤·$k=5/6$)¤È¤Î¸íº¹¤ò¥°¥é¥Õ¤Ë¤·¤Æ¤ß¤ë¡£
5/19ÆâÍÆ
- gnuplot¤Ç¥°¥é¥Õ¤òÉÁ¤¡¢png²èÁü¤Ë½ÐÎϤ·¤Æ¡¢
- ²èÁü¤òstr¤Ë¥¢¥Ã¥×¤·¤Æ¡¢wiki¤ËޤêÉÕ¤±¤ë
²ÝÂê
- 3D·Ï¤ò¤ä¤ê¤¿¤¤¿Í¤Ï¡¢3D¥×¥ê¥ó¥¿¡¼¥á¥â¤Î¥Ú¡¼¥¸¤Ë
- Eden260V¤Ç»È¤¨¤ëºàÎÁ¤Ç¡¢
- ¥ä¥ó¥°Î¨¤¬¤«¤¿¤á¤ÇÊÑÆ°¤¬¾¯¤Ê¤¤ºàÎÁ
- ¥³¥¹¥È¤Ï¡©
5/12ÆâÍÆ
- ¤³¤³¤ÎÆâÍÆ¤Ë¤½¤Ã¤Æ¡¢
- Salome¤ÇŬÅö¤ÊľÊýÂΡÊÁÛÁü¤·¤ä¤¹¤¤1cm³Ñ1mÄøÅ٤γѺà¤È¤«)¤ò¤Ä¤¯¤ê
- ¥á¥Ã¥·¥åʬ³ä¤·¡¢unv·Á¼°¤ò½ÐÎÏ
- c3d4unv.f90¤ò»È¤Ã¤Æ¡¢CalculiXÆþÎÏÍѤÎinp¥Õ¥¡¥¤¥ë¤òºî¤ë
- ÊÒ»ý¤ÁΤǡ¢¼«Í³Ã¼¤ËºÜ²Ù
- ºàÎÁ¤ÏÌÚºàÄøÅ٤Υä¥ó¥°Î¨¤ÎÅùÊýÀºàÎÁ
- ¥á¥Ã¥·¥åʬ³ä¿ô¡¢·åÉý¡¢·å¹â¡¢ÎÂŤÎÈæÎ¨¡¢¥ä¥ó¥°Î¨Åù¤ò¤«¤¨¤Æ¤ß¤Æ¡¢
¤¿¤ï¤ß¤Î¼°($v=\frac{P\ell^{3}}{3EI}+\frac{P\ell}{kGA}$)¤È¤ÎÁêÂÐ¸íº¹¤¬¤É¤¦
ÊѤï¤ë¤«¤ò¹Í»¡¤·¡¢·ë²Ì¤òɽ¤Ë¤·¤Æ¡¢³Æ¼«¤Î´ÏÀÆü»ï¤Ë¡£
4/28ÆâÍÆ
4/22ÆâÍÆ
gfortran¤Î¥³¥ó¥Ñ¥¤¥ë
gfortran -o hoge hoge.f90
¤³¤³¤ÎFortranÆþÌç¤Î²ÝÂê2¤Þ¤Ç½ÉÂê¡£
4/14ÆâÍÆ
- ¤³¤³¤ÎUNIX¥³¥Þ¥ó¥É¤Èvi¤Î»È¤¤Êý¤ò³Ð¤¨¤ë¡£
- ¤½¤Î¾å¤Ç¡¢°Ê²¼¤ÎLinux¤ÎÎò»Ë¤Î¥Æ¥¥¹¥È¤òŬÅö¤Ê¥Õ¥¡¥¤¥ë¤ËÂǤÁ¹þ¤à¡£¥¿¥¤¥Ô¥ó¥°¤Èvi¤ÎÎý½¬¤ò¤¹¤ë¡£
- vi¤ò»È¤¦¤È¤¤ÏÌð°õ¥¡¼¤ò»È¤ï¤º¤Ëhjkl¤Ç°Üư¤¹¤ë¤Î¤Ë¤Ê¤ì¤ë
- ²þ¹Ô¤Ï¡¢¶çÆÉÅÀ¤È¤«¤Î¶èÀÚ¤ì¤Î¤¤¤¤¤È¤³¤Ç¡¢¤³¤Þ¤á¤ËÆþ¤ì¤ë¡£
- º£¸å¡¢TeX¤Ê¤É¤Î¥Ä¡¼¥ë¤Çʸ½ñ¤ò½ñ¤¯¤È¤¤Ï¡¢²þ¹Ô¤Ïµ¡³£¤Þ¤«¤»¤È¤Ê¤ë¡£
4/10ÆâÍÆ
Linux¤ÎÎò»Ë
¥Ñ¥½¥³¥ó¤ÎÁàºî
- ÆüËܸì/Ⱦ³Ñ±Ñ¿ô¤ÎÀÚ¤êÂØ¤¨¡§ÌµÊÑ´¹¥¡¼¡Êº¸¿Æ»Ø¡Ë
- ¥³¥Ô¥Ú¡§º¸¥¯¥ê¥Ã¥¯¤ÇÁªÂò¤·¤Æ¡¢¿¿¤óÃæ¥Ü¥¿¥ó¤ÇޤêÉÕ¤±
¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
- °Ê¾å¤ò3ʬ°ÊÆâ¤òÌÜɸ¤Ë¡£
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£Enter¥¡¼¤Ï(¼ê¼ó¤ò²óž¤µ¤»¤Æ)±¦¼ê¤Î¾®»Ø¤Ç¡£
»Ø¤¬ÆÏ¤¯¸Â¤ê¤ÏÏÓ¤ÎÉôʬ¤Ï´ù¤Ë¤¯¤Ã¤Ä¤±¤¿¾õÂ֤ǻشØÀá¤Î¶Ê¤²¿¤Ð¤·¤È¼ê¼ó¤Î²óž¤Î¤ß¤Î
¼«Í³ÅÙ¤ò»È¤¦¡£¼ê¼ó¤äÏÓ¤ò»ý¤Á¾å¤²¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¡£
¥¦¥£¥¾å¤Ë´ÏÀÆü»ï¤òºîÀ®
UNIX¥³¥Þ¥ó¥É
MATEüËö¤ò³«¤¤¤Æ¡¢
- ls
- cd ¥Ç¥£¥ì¥¯¥È¥ê̾
- mkdir ¥Ç¥£¥ì¥¯¥È¥ê̾
- pwd
¹½Â¤¸¦Æ±Á륦¥£¥Æâ¤ÇĹëÉôÀèÀ¸¶ÈÀÓ½¸¥ê¥¹¥È¤ÎÆþÎÏ
ubuntu¤Î¥¢¥Ã¥×¥Ç¡¼¥È¤Ë¤Ä¤¤¤Æ
¥¢¥Ã¥×¥Ç¡¼¥È¡¦¥Þ¥Í¡¼¥¸¥ã¤Ç¡Ö¤³¤Î¥³¥ó¥Ô¥å¡¼¥¿¤ÇÍøÍѤǤ¤ë¥½¥Õ¥È¥¦¥§¥¢¥¢¥Ã¥×¥Ç¡¼¥È¤¬¤¢¤ê¤Þ¤¹¡×¤Èɽ¼¨¤µ¤ì¤¿¾ì¹ç¡¢
¡Ö¥¢¥Ã¥×¥Ç¡¼¥È¤ò¥¤¥ó¥¹¥È¡¼¥ë¡×¤ò¥¯¥ê¥Ã¥¯¤·¤Æ¥¢¥Ã¥×¥Ç¡¼¥È¤ò
¥¤¥ó¥¹¥È¡¼¥ë¤·¤Æ¤ª¤¤¤Æ²¼¤µ¤¤¡£
''¤¿¤À¤·¡¢¡ÖUbuntu¤Î¿·¤·¤¤¥ê¥ê¡¼¥¹'12.04.1 LTS'¤¬ÍøÍѲÄǽ¤Ç¤¹¡×¤Èɽ¼¨¤µ¤ì¤Æ¤¤¤ë¾ì¹ç¤Ï¡Ö¥¢¥Ã¥×¥°¥ì¡¼¥È¡×¤Î¤È¤³¤í¤Ï¥¯¥ê¥Ã¥¯¤·¤Ê¤¤¤è¤¦¤Ë¡£''
ubuntu¤ò12.04¤Ë¥¢¥Ã¥×¥°¥ì¡¼¥É¤·¤Æ¤·¤Þ¤¦¤È¡¢CAE Linux¤Î¥Ä¡¼¥ë¡ÊSalome¤È¤«¡Ë¤¬
ư¤«¤Ê¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦¤Î¤Ç¡¢¥¢¥Ã¥×¥°¥ì¡¼¥É¤Ï¹Ô¤ï¤º¤Ë¡¢
¥¢¥Ã¥×¥Ç¡¼¥È¤Î¤ß¤ò¹Ô¤¦¤³¤È¡£
2013ǯÅÙÁ°´ü
- ·îÍË14:30¤«¤é¥Ñ¥½¥³¥ó¥¼¥ß
- ÌÚÍË13:00¤«¤é±Ñ¸ì¥¼¥ß
¥¼¥ß²ÝÂêÌÚ¶¶(6/24¤Þ¤Ç)
- ±þµÞ¶¶¤ä¥ª¥ó¥µ¥¤¥ÈÌÚ¶¶¤ÎÊÒ»ý¤Á¥â¥Ç¥ë¤òº£¤Þ¤Ç¤Î²ÝÂê¤ß¤¿¤¤¤Ë²ò¤¯
- ¼ý«¤Î¥°¥é¥Õ¤ä¡¢¸íº¹¤Î¥°¥é¥Õ¤ò½ñ¤¤¤Æ¤ß¤ë
¥¼¥ß²ÝÂê(6/17¤Þ¤Ç)
- salome¤ÇÀè½µ¤Î²ÝÂê¤ÈƱ¤¸·Á¤Î¥â¥Ç¥ë¤òºî¤Ã¤Æ¥á¥Ã¥·¥å¤òÀÚ¤ë
- ¤½¤ì¤òccx¤Îinp¥Õ¥¡¥¤¥ë¤Ë¤·¤Æ·×»»¤¹¤ë¡£
- Àè½µ¤ß¤¿¤¤¤Ë¥°¥é¥Õ¤ò½ñ¤¯
¥¼¥ß²ÝÂê(6/10¤Þ¤Ç)
- ÊÒ»ý¤ÁΤη׻»¤ä¤êľ¤·
- ÍýÏÀÃͤϥƥ£¥â¥·¥§¥ó¥³Î¤Τ¿¤ï¤ß¤â·×»»¤¹¤ë
- ÎÂÃÇÌ̤ϽÄĹ¡¢ÀµÊý·Á¡¢²£Ä¹¤Î£³¼ï
- Í×ÁÇʬ³ä¤Ï$nx=2\sim 10, ny=10\sim 40, nz=10\sim 500$
- nz¤Þ¤¿¤Ïny¤ÈÊѰ̤ʤɤΥ°¥é¥Õ¤ògnuplot¤ÇÉÁ¤¤¤Æ¤ß¤ë
- str¥µ¡¼¥Ð¡¼¤Îgotouhan¤Ëgftp¤Ç¥¢¥¯¥»¥¹¤·¡¢Å¬Åö¤Ê¡Ê̾Á°¤ò¿ä¬¤Ç¤¤ë¡Ë¥µ¥Ö¥Ç¥£¥ì¥¯¥È¥ê¤òºîÀ®¤·¡¢¥°¥é¥Õ¤ò¥¢¥Ã¥×¥í¡¼¥É¤·¤Æ³Æ¼«¤Î´ÏÀÆü»ï¤ËޤêÉÕ¤±¤ë
- ¼´¤ÎÀâÌÀ¤Ï¿Þ¤ËÆþ¤ì¤Ê¤¯¤Æ¤¤¤¤¤Î¤Ç¡¢¥¦¥£¥¾å¤ÇÊ䤹¤ë
²èÁüޤêÉÕ¤±¤ÎÎý½¬
- ²£¼´¡§Í×ÁÇ¿ô
- ½Ä¼´¡§¤¿¤ï¤ß
¥¼¥ß²ÝÂê(6/3¤Þ¤Ç)
- ccxkataz.f90¤ò»È¤Ã¤Æ¡¢(1Í×ÁǤÎÂ礤µ¤¬1mm¤è¤ê¾®¤µ¤¯¤Ê¤ë¤Ê¤éf9.3¤Î¤È¤³¤í¤òÊѤ¨¤ë¡¢¤¢¤È²Ù½Å¤Î¤È¤³¤í¤ò¥Õ¥©¡¼¥Þ¥Ã¥È¤ò¤·¤Æ¤¹¤ë¤«¡¢inp¥Õ¥¡¥¤¥ë¤Î²Ù½Å¤Î¿ô»ú¤Î·å¤ò¾¯¤Ê¤¯¤¹¤ë)
ÁÛÁü¤Ç¤¤ëÂ礤µ¡¦ºàÎÁ¤ÎÊÒ»ý¤ÁÎÂ¥â¥Ç¥ë¤òºîÀ®¤·¡¢ccx_2.3¤Ç²ò¤¤¤Æ¤ß¤ë¡£
- xÊý¸þ¡¢yÊý¸þ¡¢zÊý¸þ¤ÎÍ×ÁÇʬ³ä¤òÊѤ¨¤Æ¤¤¤¡¢¼ê·×»»$\frac{P\ell^{3}}{3EI}$¤È¤Î¸íº¹¤òÈæ³Ó
- ºàÎÁ¤Ï¡¢¼«Ê¬¤Ç¸Ç¤µ¤òÁÛÁü¤Ç¤¤ë¤â¤Î¤¬¤¤¤¤¤¬¡¢Î㤨¤ÐÌÚºà¤È¤«¤Ç¤âÅùÊýÀºàÎÁ¤È¤ß¤Ê¤·¤Æ¡¢¥ä¥ó¥°Î¨¤À¤±¤òÍ¿¤¨¡Ê¥¹¥®¤Ê¤é7GPa¤°¤é¤¤¤È¤«¡Ë¡¢¥Ý¥¢¥½¥óÈæ¤Ï¤Ò¤È¤Þ¤º0.3¤È¤·¤Æ¤è¤¤¡£
¥¼¥ß²ÝÂê(5/20¤Þ¤Ç)
¤³¤³¤ÎFortranÆþÌç¤Î²ÝÂê2¤Þ¤Ç¡£
¥¼¥ß²ÝÂê(4/15¤Þ¤Ç)
4/15°Ê¹ß¤Î²ÝÂê
¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
- °Ê¾å¤ò3ʬ°ÊÆâ¤òÌÜɸ¤Ë¡£
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£Enter¥¡¼¤Ï(¼ê¼ó¤ò²óž¤µ¤»¤Æ)±¦¼ê¤Î¾®»Ø¤Ç¡£
»Ø¤¬ÆÏ¤¯¸Â¤ê¤ÏÏÓ¤ÎÉôʬ¤Ï´ù¤Ë¤¯¤Ã¤Ä¤±¤¿¾õÂ֤ǻشØÀá¤Î¶Ê¤²¿¤Ð¤·¤È¼ê¼ó¤Î²óž¤Î¤ß¤Î
¼«Í³ÅÙ¤ò»È¤¦¡£¼ê¼ó¤äÏÓ¤ò»ý¤Á¾å¤²¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¡£
2012ǯÅÙ¸å´ü
- ¥¼¥ßÍËÆü°Æ¡§ÌÚÍˤÎ13:00¤«¤é
- ¶âÍˤÎÁϤ¹©Ë¼¼Â½¬Á°¤â³ØÀ¸¼¼¤Çºî¶È¤¹¤ë¤³¤È
¡ÖÅÅÎÏÅÚÌڡ׸¦µæ¼¼¾Ò²ð:M2¤¬¼çÂΤˤʤäơ¢ËèÆü1¹Ô¤Ï¤Ê¤Ë¤«½ñ¤¤¤Æ¤¤¤¯¤³¤È¡£
¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹(7/28ÅÚ)
2012ǯÅÙ
²ÆµÙ¤ß¤Î²ÝÂê
- °æÈæ¡§salome¾å¤Ç¥â¥Ç¥ë²½¤Ç¤¤ë¥À¥¤¥ä¥«¥Ã¥È¤Ë¤Ä¤¤¤Æ¡¢¹©Æ£¤µ¤ó¤Î½¤ÏÀ¤Ë¤Ê¤é¤Ã¤Æ¡¢
°µ½Ì¡¢°úÄ¥¤òºÜ²Ù¤·¤¿¾ì¹ç¤Î¤Ð¤ÍÄê¿ô¤ò·×»»¤¹¤ë
- »°Â𡧤ޤº¡¢Ä¾ÊýÂÎÊÒ»ý¤ÁΤòsalome¤Ç¥â¥Ç¥ë²½¤·¤Æ¡¢CalculiX¤Ç²ò¤±¤ë¡Ê¼ê·×»»¤ÈÈæ³Ó¡Ë¤³¤È¤ò³Îǧ¤·¤Æ¤«¤é¡¢¹çÈıþµÞ¶¶¤òsalome¤Ç¥â¥Ç¥ë²½¤·¡¢CalculiX¤Ç²ò¤¯
- ¶âß·¡§¥ª¥ó¥µ¥¤¥ÈÌÚ¶¶¤òccxonsaito.f90¤Ç¹ÝÈĤÎG¤òÊѤ¨¤Ê¤¬¤éCalculiX¤Ç²ò¤¯¡£salome+CalculiX¤Ç¹ÝÈĤÈÌÚºà¤Î¤¯¤Ã¤Ä¤¤¤¿2ºàÎÁ¤ÎľÊýÂÎ¥â¥Ç¥ë¤ò¥â¥Ç¥ë²½¤·¤Æ¤ß¤ë¡£
- °Ê¾å¤ò´ÏÀ³µÍ×·Á¼°¤ÇTeX·Á¼°¤Ç¤Þ¤È¤á¤ë¡£
- ¥Ñ¥½¥³¥ó¥¼¥ß·îÍË14:30-16:00
- ±Ñ¸ìFEM¥¼¥ßÌÚÍË13:00-14:30
¡ÖÅÅÎÏÅÚÌڡ׸¦µæ¼¼¾Ò²ð
- ¤³¤Ã¤Á¤Ç¿äÚÊ¡Ê³ØÆâ¤Î¤ß¡Ë
M2¤¬¼çÂΤˤʤäơ¢ËèÆü1¹Ô¤Ï¤Ê¤Ë¤«½ñ¤¤¤Æ¤¤¤¯¤³¤È¡£
±Ñ¸ì¥¼¥ß
- ½Ð·ç(³ØÆâ¤Î¤ß¥¢¥¯¥»¥¹²Ä)
- ÏÂÌõ(³ØÆâ¤Î¤ß¥¢¥¯¥»¥¹²Ä)
¥Ñ¥½¥³¥ó¥¼¥ß
´ÏÀ¥Æ¡¼¥Þ
- ¹çÈĤȳѺà¤Î±þµÞ¶¶(¼Â¸³¤ÈFEM²òÀÏ)
- ¥ª¥ó¥µ¥¤¥ÈÌÚ¶¶(²áµî¤Î¼Â¸³¥Ç¡¼¥¿¤Î½èÍý¤ÈFEM²òÀÏ)
- ÀÞ¤ê»æ¹½Â¤(¥À¥¤¥ä¥«¥Ã¥ÈȾ±ßÅû¤È¤«)¤òSalome³Æ¼ï¤Î¥á¥Ã¥·¥å¤Ç²ò¤¤¤ÆÈæ³Ó
- Á¥Àî¹Á¤Î»ñÎÁ¤Î¥¹¥¥ã¥ó¤È¥Ç¡¼¥¿¥Ù¡¼¥¹²½¡©
½ÉÂê
6/25¤Þ¤Ç
- ŬÅö¤Ê¥°¥é¥Õ¤òÉÁ¤¤¤Æ$\LaTex?$¤Ë¼è¤ê¹þ¤à
- Î㤨¤Ð¡¢fortran¤Ç$\frac{x^{2}}{\sin(x)}$¤È¤«¤Îx,y¥Ç¡¼¥¿¤ò½ÐÎÏ
implicit real*8(a-h,o-z)
x=0.
do i=1,100
x=real(i)/10.
print*, x,x**2/sin(x)
end do
end
6/21¤Þ¤Ç
- Salome-Gmsh-cgx-ccx¤ÇľÊýÂΤò°µ½Ì¤¹¤ë¤ä¤êÊý¤ò4ǯÀ¸¤Ç¶¦Í¤¹¤ë
- ¤³¤³¤Î
web1w.tex, web2w.tex, web4w.tex(²èÁü¥Õ¥¡¥¤¥ë¤â)¤ò¥À¥¦¥ó¥í¡¼¥É¤·¤Æ¡¢
vi¤ÇÊÔ½¸¡¢platex¤Ç¥³¥ó¥Ñ¥¤¥ë¡¢pxdvi¤Çɽ¼¨¤Ê¤ÉTeX¤Î»È¤¤Êý¤Ë´·¤ì¤Æ¤ª¤¯¡£
5/28¤Þ¤Ç
¤³¤³¤Îg77ÆþÌç¤Î²ÝÂê3¤Þ¤Ç¤òvi¤Ç¥×¥í¥°¥é¥à¤òºîÀ®¤·¡¢¥³¥ó¥Ñ¥¤¥ë¤·¤Æ¼Â¹Ô¤Ç¤¤ë¤³¤È¤ò³Îǧ¤¹¤ë¡£
5/21¤Þ¤Ç
¤³¤³¤Îvi¤Î»È¤¤Êý¤¬°ìÄ̤ê¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¾å¤Ç¡¢
¤³¤³¤Îg77ÆþÌç¤Î²ÝÂê2¤Þ¤Ç¤òvi¤Ç¥×¥í¥°¥é¥à¤òºîÀ®¤·¡¢¥³¥ó¥Ñ¥¤¥ë¤·¤Æ¼Â¹Ô¤Ç¤¤ë¤³¤È¤ò³Îǧ¤¹¤ë¡£
¤ß¤Ê¤µ¤ó¤Î´Ä¶¤Ç¤Îgfortran¤Î¥³¥ó¥Ñ¥¤¥ë¤È¼Â¹Ô¤Ï¡¢
$vi hoge.f90 ¤³¤ì¤Ç¥×¥í¥°¥é¥àhoge.f90¤ò¼«Í³·Á¼°¤ÇºîÀ®
$gfortran -o hoge hoge.f90¡¡¡¡¤Ç¥³¥ó¥Ñ¥¤¥ë
ls¤Ç³Îǧ¤¹¤ë¤È¡¢Îп§É½¼¨¤Çhoge*¤È¤¤¤¦¼Â¹Ô¥Õ¥¡¥¤¥ë¤¬¤Ç¤¤Æ¤¤¤ë¡£
$./hoge ¤Ç¼Â¹Ô
5/14
ǽÂå¤Ç¼Â¸³
4/23°Ê¹ß¤Î²ÝÂê
4/23¤Þ¤Ç
- ¤³¤³¤Î¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬¤ò5Ê¬ÄøÅÙ¤òÌܰ¤ˡ£
2011ǯÅÙ
¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹
ÊÛÅö
15¸Ä¤Î¿¶¤ê»Ò
ºÇû52.4cm¤«¤éºÇĹ120.0cm¤Þ¤Ç¤ò°Ê²¼¤Î¤è¤¦¤ËÇÛʬ(¤¹¤ë¤È1ʬ¤Ç¸µ¤ËÌá¤ë¤Ï¤º)
1 cos(¦Øt)= -0.244964 L= 120
2 cos(¦Øt)= -0.244859 L= 111.666335
3 cos(¦Øt)= -0.244754 L= 104.171583
4 cos(¦Øt)= -0.244649 L= 97.40681
5 cos(¦Øt)= -0.244544 L= 91.280206
6 cos(¦Øt)= -0.24444 L= 85.713953
7 cos(¦Øt)= -0.244335 L= 80.641744
8 cos(¦Øt)= -0.24423 L= 76.006796
9 cos(¦Øt)= -0.244125 L= 71.760255
10 cos(¦Øt)= -0.24402 L= 67.859907
11 cos(¦Øt)= -0.243915 L= 64.269118
12 cos(¦Øt)= -0.24381 L= 60.955975
13 cos(¦Øt)= -0.243705 L= 57.892576
14 cos(¦Øt)= -0.2436 L= 55.054436
15 cos(¦Øt)= -0.243496 L= 52.42
¥Ï¥¤¥Ö¥ê¥Ã¥ÉÌÚ¶¶
¥¢¡¼¥Á
Âνŷ×ñ½ãÎÂ
²ÆµÙ¤ß¤Î²ÝÂê
- ÂçÅÄ¡§¹ÝÈÄ(¤Þ¤º¤Ï¹¦¤Ê¤·)¤Îñ½ãÎÂ(ÅùʬÉÛ²Ù½Å)¤ò¥·¥§¥ëÍ×ÁǤDzò¤¤¤Æ¡¢
ÎÂÍýÏÀ(¹½Â¤Îϳؤθø¼°)¤È3·å¹ç¤¦¤«¡£¤³¤ì¤¬¤Ç¤¤¿¤é¡¢»°³Ñ¹¦¶õ¤¥â¥Ç¥ë¤ò²ò¤¤¤Æ¤ß¤ë¡£
- ¿ÜÆ£¡§ÆþÎÏÇȱþÅú¤ÎÎãÂê¤Ï¤â¤¦¤Ò¤È²¡¤·¡£¼ØÊ¢ÀÞ¤ê»Ù¾µ¤Î¥×¥í¥°¥é¥à¤ò¼ÆÅĤµ¤ó¤«¤é¤â¤é¤Ã¤Æ¡¢¥â¡¼¥É²òÀϤ·¤Æ¤ß¤ë¡£
- ¾®¾¾¡§Ê¬ÎàÊýË¡¡¢»£±ÆÊýË¡¤Î¸¡Æ¤¡£¤ä¤Ã¤¿¤³¤È¤ò¤Þ¤È¤á¤ë¡£¤Þ¤º¤Ï»î¸³Åª¤Ë»£±Æ¤·¤¿¼Ì¿¿¤ò»È¤Ã¤Æ¥¦¥§¥Ö¥¢¥ë¥Ð¥à¤ËÀ°Íý¤¹¤ëÎý½¬¤ò¤ä¤Ã¤Æ¤ß¤ë¡£»ñÎÁ·²¤«¤é¥Í¥¿¤¬¸«¤¨¤Æ¤¯¤ì¤Ð¡¢¤½¤ì¤Ë¤Ä¤¤¤Æ¤ÎŸ˾¡£
- ÅÏ§Ìڹ⸦¤ÇÀ½ºî¤·¤¿»î¸³ÂΤËÂФ¹¤ë¶Ê¤²»î¸³¤Ë¤è¤ëG¬Äê¤Î¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤òCalculiX¤Ç¤ä¤ë¡£
- ÂìÅÄ¡§¾å¤Î»î¸³ÂΤò105*105*150¤°¤é¤¤¤ËÀÚ¤ê½Ð¤·¤¿¥â¥Ç¥ë¤ËÂФ·¤Æ¡¢¤»¤óÃÇÇȤòÆþÎϤ·¤Æ¡¢±þÅú¤ò¸«¤ì¤ë¤«¤É¤¦¤«¡£
ºî¶ÈµÏ¿¤Ê¤É
±Ñ¸ì¥¼¥ß
¸¦µæ¥×¥í¥Ý¡¼¥¶¥ë
4/18¤Ë¤ä¤Ã¤Æ¤Û¤·¤¤¤³¤È
- ¥í¥°¥¤¥ó/¥í¥°¥¢¥¦¥È
- root¥æ¡¼¥¶¡¼¤Ë¤Ê¤Ã¤Æ¡¢¥¢¥Ã¥×¥°¥ì¡¼¥É¤Ç¤¤ë
- ÆüËܸì¤Îµ¯Æ°/½ªÎ»(º¸¼ê¿Æ»Øµ¯Æ°¡¢¥í¡¼¥Þ»úÆþÎϤé¤ê¤ë¤ì¤í¤Ê¤É)
- Wiki¤Ë´ÏÀÆü»ï¤òºî¤ë
- ²¼¤Î¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ò3ʬ°ÊÆâ¤Ç¤Ç¤¤ë¤è¤¦¤Ë¡£
- ¤³¤³¤ÎUNIX¥³¥Þ¥ó¥É¤ò³Ð¤¨¤ë¡£
- ;͵¤¬¤¢¤ì¤Ð¡¢2010ǯÅÙ¤ÎÎã¤ò»²¾È¤·¤ÆÀè¤Ë¿Ê¤à
2010ǯÅÙ
6/10¤Þ¤Ç¤Î½ÉÂê
¤³¤ÎÊÕ¤ÎÍ×ÎΤǡ¢¼ý«¾õ¶·¤Îɽ¤ògnuplot¤Ç¥°¥é¥Õ¤Ë¤·¤Æ¡¢xfig¤Ë¼è¤ê¹þ¤ó¤Ç¡¢Ìð°õ¤äÀâÌÀ¤ò¤«¤¤³¤ß¡¢
¤½¤ì¤òÁ°²ó¤ÎTeX¥Õ¥¡¥¤¥ë¤ËÁÞÆþ¤·¤Æ¡¢¿ÞÃæ¤ÎÀâÌÀʸ¤Ê¤É¤òTeX·Á¼°¤Ë¤Ê¤ª¤·¤Æ¡¢
°ÌÃ֤ʤɤòÈùÄ´À°¤¹¤ë¡£
6/3¤Þ¤Ç¤Î½ÉÂê
web2e.texÊÕ¤ê¤ò»²¹Í¤Ë¤·¤Æ¡¢º£wiki¤Ë¤Î¤»¤Æ¤ëɽ¤òTeX¤Ç½ñ¤¤¤Æ¡¢¤Á¤ç¤Ã¤È¤·¤¿¹Í»¡¤ò²Ã¤¨¤Æ¡¢
¥ì¥Ý¡¼¥È¤Ë¤Þ¤È¤á¤Æ¤ß¤ë¡£
5/27¤Þ¤Ç¤Î½ÉÂê
ccxkataz.f
¤ÎºÜ²Ù¾ò·ï¤ò¡¢¼«Í³Ã¼¤Î4¤¹¤ß¤¬p, 2Í×ÁǤ¬¤¯¤Ã¤Ä¤¤¤Æ¤¤¤ëÀáÅÀ(4¤¹¤ß°Ê³°¤Î4ÊÕ)¤ò2p,
4Í×ÁǤ¬¤¯¤Ã¤Ä¤¤¤Æ¤¤¤ëÀáÅÀ(»ÍÊհʳ°¤ÎÆâÉô)¤ò4p¤ÈºÜ²Ù¤Ç¤¤ë¤è¤¦¤Ë½¤Àµ¤·¤Æ¡¢ºÆÅÙ¡¢·×»»¡£ÊѰ̤Ïdat¥Õ¥¡¥¤¥ë¤«¤éÆÉ¤ß¼è¤ë¡£
;͵¤Î¤¢¤ë¿Í¤Ï¡¢¸ÇÄêü¤ÎÃæÎ©¼´¿åÊ¿Àþ¤òy,z¸ÇÄê¡¢º¸±¦¤ÎÂоÎÀþ¤òx,z¸ÇÄê¡¢¤½¤ì°Ê³°¤Ïz¤Î¤ß¸ÇÄê¤Ë½¤Àµ¤·¤Æ¤ß¤ë(Ⱦ²òÀϤÎÎã¤À¤¬¡¢ccxkata.f¤Î¶³¦¾ò·ï¤¬»²¹Í¤Ë¤Ê¤ë¡£
5/20¤Þ¤Ç¤Î½ÉÂê
ccxkataz.f¤ò»È¤Ã¤Æ¡¢ÊÒ»ý¤ÁΤζʤ²¤ÎÌäÂê¤òºîÀ®¤·¡¢x,y,zÊý¸þ¤ÎÍ×ÁÇʬ³ä¤òÊѤ¨¤Æ¤¤¤Ã¤Æ¡¢
$v=\frac{P\ell^{3}}{3EI}$¤Çµá¤Þ¤ë¤¿¤ï¤ß¤È¤ÎÁêÂÐ¸íº¹¤ò¹Í»¡¡£
¤ß¤ó¤Ê¤ÇƱ¤¸¤â¤Î¤ò²ò¤¤¤Æ¤â¤ª¤â¤·¤í¤¯¤Ê¤¤¤Î¤Ç¡¢ºàÎÁÄê¿ô¤äÂ礤µ¤Ê¤É¤Ï¡¢³Æ¼«¤Ç
¼«Í³¤ËÀßÄꡣ⤷¡¢1m*1m¤ÎÃÇÌ̤ιݺà¤È¤«¡¢È󸽼ÂŪ¤Ê¤Î¤ÏÈò¤±¤ë¡£
»²¹Í»ñÎÁ¤È¤·¤Æ¡¢CalculiX¥á¥â
¤Û¤ó¤È¤Ï¡¢¥°¥é¥Õ¤ËÉÁ¤¯¤Î¤¬Ë¾¤Þ¤·¤¤¤±¤É¡¢
¤³¤Îɽ
¤ò»²¹Í¤ËÁêÂÐ¸íº¹¤Îɽ¤ò½ñ¤¤¤Æ¤ß¤Æ¤â¤¤¤¤¤«¤â¡£
5/13¤Þ¤Ç¤Î½ÉÂê
¤³¤³¤ä
¤³¤ÎÊÕ
(¥¢¥¯¥»¥¹À©¸Â¤¢¤ê)¤Î¥Þ¥Ë¥å¥¢¥ë¤ò»²¹Í¤Ë¤·¤Ê¤¬¤é¡¢
- ccx¤ÎÆþÎϥǡ¼¥¿Îã¤È¤·¤Æ
¤³¤ÎÊÕ¤Î
beam8p.inp ¤Ê¤É¤ÎÎãÂê¤ò¥À¥¦¥ó¥í¡¼¥É
- ccx_1.7 beam8p ¤È¤·¤Æ¼Â¹Ô
- beam8p.dat¤äbeam8p.frd¤Ê¤É¤Î½ÐÎÏ¥Õ¥¡¥¤¥ë¤¬¤Ç¤¤¿¤³¤È¤ò³Îǧ¤·¡¢vi¤Ê¤É¤ÇÃæ¿È¤¬¤É¤¦¤Ê¤Ã¤Æ¤¤¤ë¤«¤â³Îǧ¤·¡¢
- cgx_1.7 beam8p.frd¤Çcgx¤Ç²òÀÏ·ë²Ì¤òɽ¼¨¤Ç¤¤ë¤«¤É¤¦¤«³Îǧ¡£cgx_1.7¤Ç¤¦¤Þ¤¯¤¤¤«¤Ê¤¤¤È¤¤Ï¡¢cgx_1.6¤â¤¿¤á¤·¤Æ¤ß¤ë¡£
- salome¤ÎÏÂÌõ¤ò¤³¤³(¥¢¥¯¥»¥¹À©¸Â¤¢¤ê¡£³ØÆâ¤Î¤ß¥¢¥¯¥»¥¹²Ä¡Ë¤Ë½ñ¤¹þ¤ó¤Ç¤¤¤¯¡£salome¤òÁö¤é¤»¤Æ¤ß¤¿¤¤¾ì¹ç¤Ï¡¢Salome¥á¥â¤ÎÍ×ÎΤǡ£
4/23¤Þ¤Ç¤Î½ÉÂê
¤³¤³¤Îvi¤Î»È¤¤Êý¤¬°ìÄ̤ê¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¾å¤Ç¡¢
¤³¤³¤Îg77ÆþÌç¤Î²ÝÂê2¤Þ¤Ç¤òvi¤Ç¥×¥í¥°¥é¥à¤òºîÀ®¤·¡¢¥³¥ó¥Ñ¥¤¥ë¤·¤Æ¼Â¹Ô¤Ç¤¤ë¤³¤È¤ò³Îǧ¤¹¤ë¡£
¤ß¤Ê¤µ¤ó¤Î´Ä¶¤Ç¤Îg77¤Î¥³¥ó¥Ñ¥¤¥ë¤È¼Â¹Ô¤Ï¡¢
$vi hoge.f ¤³¤ì¤Ç¥×¥í¥°¥é¥àhoge.f¤òºîÀ®
¼«Í³·Á¼°¤ÇºîÀ®¤·¤¿¾ì¹ç¤Ï¡¢
$g77f -o hoge hoge.f¡¡¡¡¤Ç¥³¥ó¥Ñ¥¤¥ë
ls¤Ç³Îǧ¤¹¤ë¤È¡¢Îп§É½¼¨¤Çhoge*¤È¤¤¤¦¼Â¹Ô¥Õ¥¡¥¤¥ë¤¬¤Ç¤¤Æ¤¤¤ë¡£
$./hoge ¤Ç¼Â¹Ô
4/15¤Þ¤Ç¤Î½ÉÂê
TeX´Ø·¸
TeX¤Î¤è¤¯»È¤¦¥³¥Þ¥ó¥É¤Ï¡¢Anthy¤Ë¼½ñÅÐÏ¿¤·¤Æ¤¢¤ë¤Î¤Ç¡¢
¤³¤³
¤Ë¤¢¤ë¤è¤¦¤Ë¡¢¡Öbc¡×¤Ç\begin{center}¤È¤«¡¢¡Ö¤¨c¡×¤Ç\end{center}¤È¤«½Ð¤»¤Þ¤¹¡£
2009ǯÅÙ
¥¼¥ß½Ð·ç
Æü»þ | ¼ÆÅÄ | Åĸý | ÈªÃæ | Ìç´Ö |
4·î22Æü | | | | |
5·î13Æü | | | | |
5·î20Æü | | ·ç | | |
5·î27Æü | | | | |
6·î3Æü | | | | |
6·î10Æü | | | | |
6·î17Æü | | | | |
6·î24Æü | | | | |
7·î1Æü | | | | |
7·î8Æü | | | | |
7·î15Æü | | | | |
7·î22Æü | | | | |
7·î29Æü | | | | |
²ÆµÙ¤ß¤Î½ÉÂê
4¿Í¶¦ÄÌ(Ìò³äʬô¤¬¤Ï¤Ã¤¤ê¤¹¤ë¤Þ¤Ç¤Ï)
- ¥±¥ó¥È»æ¤Î°úÄ¥»î¸³¤ò¹Ô¤Ê¤¤¥ä¥ó¥°Î¨¤ÈÅùÊýÃÆÀ¤È¤ß¤Ê¤·¤¿¥Ý¥¢¥½¥óÈæ¤ò¬Äꤷ¤Æ¤ß¤ë¡£
- ¥²¡¼¥¸¤ÎÀÜÃå¤ÏÌÚ¹©¥Ü¥ó¥É¤¬¤¤¤¤¤«¤È¤«¡¢¸ü¤µ¤Î¬Äê¤Ï½Å¤Í¤Æ·×¤ë¤«¤È¤«¤ÎÌäÂê
- ºòǯÅÙ¤ÎÁϤ¹©Ë¼¤Î¤è¤¦¤Ê¥À¥¤¥ä¥«¥Ã¥È±ßÅû¤ÈÀÞ¤ê¾ö¤ß±ßÅû¤Î°µ½Ì¡¦°úÄ¥»î¸³¤ò¤ä¤Ã¤Æ¤ß¤ë¡£ÀÜÃåÌ̤ϼФá¤Ë¤·¤Æ¡£
- ¼Â¸³¤Î¥±¥ó¥È»æ¤ÎÀÞ¤ê¾ö¤ß±ßÅû¤Î½ô¸µ¤òCalculiX¤ËÆþ¤ì¤Æ¿ôÃͲòÀϤ·¤Æ¤ß¤ë¡£
- ¿·¤·¤¤¥¿¥¤¥×¤Î²°º¬¤Ä¤¶¶¤òÁÛÄꤷ¤Æ¡¢¥À¥¤¥ä¥«¥Ã¥È¤Î»°³Ñ¥×¥ì¡¼¥È¤Ë¼þ´üŪ¤ËÁë¤ò¶õ¤±¤¿¹½Â¤¤ÎCalculiXÍѥǡ¼¥¿¤ò¥×¥í¥°¥é¥à¤Þ¤¿¤ÏBlender(obj¤ò¼è¤ê¹þ¤ó¤Ç)¤Çºî¤Ã¤Æ¤ß¤Æ¡¢¤½¤ì¤Î¶Ê¤²²òÀϤò¤ä¤Ã¤Æ¤ß¤ë¡£
¤ë¡£
ʬô¤Î²ÄǽÀ¤È¤·¤Æ¤Ï
- ¥À¥¤¥ä¥«¥Ã¥È¼Â¸³¡¢ÀÞ¤ê¾ö¤ß±ßÅû¼Â¸³¡¢¤½¤Î¾¤ÎÀÞ¤ê»æ¹½Â¤¼Â¸³
- ¥À¥¤¥ä¥«¥Ã¥È¼Â¸³¡¢ÀÞ¤ê¾ö¤ß±ßÅû¼Â¸³¡¢²°º¬¤Ä¤¶¶¥â¥Ç¥ê¥ó¥°
¼ÆÅĤµ¤ó
- µîǯ¤Î´ÏÀ¡¦½¤ÏÀ¤ÈƱ¤¸Í×ÎΤÇÀÞ¤ê¾ö¤ß±ßÅû¤Î¿åÊ¿¥Ð¥ÍÀ®Ê¬¤Î·×»»¡£
- ºÇ½ªÅª¤Ë¤Ï¡¢°Ê²¼¤Î³Æ¼«¤Î²ÝÂê¤Ë¤Ä¤¤¤Æ¤È¤ê¤Þ¤È¤á¤¿¤â¤Î¤ò¡¢TeX²½¤·¤Æ¡¢
¤³¤ÎÊÕ¤Ë
ÃÖ¤¤¤Æ¤¢¤ëÅÚÌڳزñÅìËÌ»ÙÉô¥¹¥¿¥¤¥ë¤Ç¤Þ¤È¤á¤Æ¤Û¤·¤¤¡£
¤½¤Î¤¿¤á¤Ë¤Ï¡¢
LaTeX¤Î´ðËÜŪ¤Ê»È¤¤¤«¤¿
¤ä
gnuplot¤äXfig¤Î¿Þ¤òLaTeX¤Ë¼è¤ê¹þ¤àÊýË¡¤Ë¤Ä¤¤¤Æ»î¹Ôºø¸í¤·¤Ê¤¬¤éÎý½¬¤¹¤ëɬÍפ¬¤¢¤ë¡£
´ÏÀ³µÍס¢Â´ÏÀËÜÂΡ¢ÅìËÌ»ÙÉô¸¶¹Æ¤Ê¤É¤Ï¡¢¤³¤ÎÊýË¡¤ÇºîÀ®¤·¤Æ¤â¤é¤¤¡¢
pdf²½
¤¹¤ë¡£²ÆµÙ¤ß¤Î½ÉÂê¤Ç¤Ï¤Ê¤¤¤¬¡¢Â´ÏÀȯɽ¤ä³Ø²ñȯɽ¤Î¥¹¥é¥¤¥É¤Ï¡¢LaTeX¤Çºî¤Ã¤Æ¤âOpenOffice?¤Çºî¤Ã¤Æ¤â¤è¤¤¡£
5/19¤Þ¤Ç¤Î½ÉÂê
5/19¤Þ¤Ç¤Î½ÉÂê
- g77ÆþÌç¤Î
ÎãÂê¤ò¼Â¹Ô¤µ¤»¤Ê¤¬¤é²ÝÂê2¤Þ¤Ç¤ä¤ë¡£Í¾Íµ¤Î¤¢¤ë¿Í¤Ï²ÝÂê3¤Þ¤Ç¡£
5/27¤Þ¤Ç¤Î½ÉÂê
¾åµ¤Î²ÝÂê3¤¬¤Ç¤¤¿¿Í¤Ï¡¢°Ê²¼¤Î¥×¥í¥°¥é¥à¤òºî¤ë¡£
- 2ÊÑ¿ôx,y¤òÀë¸À
- x,y¤ËŬÅö¤Ê¿ô»ú¤òÆþÎϤ¹¤ë
- x¤Èy¤òÆþ¤ì´¹¤¨¤ë(x=3,y=2)
- °Ê¾å¤òx,y°Ê³°¤Ë¤ÏÊÑ¿ô¤ò»È¤ï¤º¤Ë¹Ô¤¦¡£
¤ªÃΤ餻
·îÍË10:30¤«¤éÂç³Ø±¡À¸¸þ¤±¤Ë¹½Â¤ÎÏ³ØÆÃÏÀ¤Î¼ø¶È¤òc317¤Ç¤ä¤Ã¤Æ¤Þ¤¹¡£
ÆâÍÆ¤Ï¡¢3¼¡¸µ¤Î¤Ò¤º¤ß¥Æ¥ó¥½¥ë¤ä±þÎϥƥ󥽥ë¤Î¤«¤é½Ðȯ¤·¤Æ¡¢
ΤÎÈùʬÊýÄø¼°$-EI\frac{d^{4}v}{dz^{4}}+q(z)=0$¤òƳ¤¯¤Þ¤Ç¤ÎƳ½Ð¤Ë½ÅÅÀ¤òÃÖ¤¤Þ¤¹¡£
¶¯À©¤Ï¤·¤Þ¤»¤ó¤¬¡¢¤Ç¤¤ë¤À¤±»²²Ã¤¹¤ë¤È¡¢
(¹½Â¤Îϳشط¸¤ÎÏä¬Ä̤¸¤ä¤¹¤¯¤Ê¤Ã¤Æ)¤¤¤¤¤«¤Ê¤È»×¤¤¤Þ¤¹¡£
¼¡²ó5/12(¿å)¤Þ¤Ç¤Î½ÉÂê
- 5/12¤Ë´Êñ¤Ê¼Âµ»»î¸³¤ò¹Ô¤¦¡£
- vi¤ÇÆüËܸì¤ÎÊÔ½¸¤ò¹Ô¤¦¾ì¹ç¤Ï¡¢ÆüËܸ줬¤¤¤Ã¤Ñ¤¤¤¢¤ì¤Ð¡¢ÆüËܸ쥳¡¼¥É(EUC)¤Î
¼«Æ°È½Ê̤ˤۤÜÀ®¸ù¤¹¤ë¤¬¡¢ÆüËܸ줬¾¯¤Ê¤¤¤â¤Î¤òÊÔ½¸¤¹¤ë¾ì¹ç¤Ï¡¢
¹ÔƬ¤Ë¡Ö¤³¤ì¤ÏÆüËܸì¡×¤Ê¤É¤ÎÌÀ¤é¤«¤ÊÆüËܸì¤ò½ñ¤¤¤Æ¤ª¤¯¤È¤è¤¤¡£
³°¹ñ¸ìʸ¸¥
¥À¥¤¥ä¥«¥Ã¥È¤ÎÏÂÌõ¤ò¤³¤³(³ØÆâ¤Î¤ß¥¢¥¯¥»¥¹²Ä)¤Ë½ñ¤¤¤Æ¤¤¤¯¡£
¥¼¥ß¤Ë¤Ä¤¤¤Æ
- ¥¼¥ß¤Ï¿åÍË13:00¤«¤é
- ²ÆµÙ¤ßÃæ¤Ï¥¼¥ß¤ÏµÙ¤ß¡£¤½¤ÎÂå¤ï¤ê½ÉÂê¤ò½Ð¤¹¡£
´ÏÀÆü»ï¤Ë¤Ä¤¤¤Æ
- ¥¼¥ß¤Ø¤Î»²²Ã¤ò´ÏÀÆü»ï¤Ë½ñ¤¤¤Æ¤Ï¤À¤á
- ³°¹ñ¸ìʸ¸¥¹ØÆÉ¤È¤«Â´ÏÀ¥×¥í¥Ý¡¼¥¶¥ë¤Î¼ø¶È»þ´Ö¤È¤·¤Æ¿ô¤¨¤é¤ì¤Æ¤¤¤ë¤â¤Î¤ò½ÅÊ£¤·¤Æ¤Ï¥À¥á¤È¤¤¤¦°ÕÌ£
- ´ÏÀ¤Ë´Ø·¸¤·¤¿¥¼¥ß¤Î²ÝÂê¤Ê¤É¤ò¹Ô¤Ã¤¿ºî¶È»þ´Ö¤ò½ñ¤¯¤Î¤Ï¤¤¤¤¤¬
¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£Enter¥¡¼¤Ï(¼ê¼ó¤ò²óž¤µ¤»¤Æ)±¦¼ê¤Î¾®»Ø¤Ç¡£
»Ø¤¬ÆÏ¤¯¸Â¤ê¤ÏÏÓ¤ÎÉôʬ¤Ï´ù¤Ë¤¯¤Ã¤Ä¤±¤¿¾õÂ֤ǻشØÀá¤Î¶Ê¤²¿¤Ð¤·¤È¼ê¼ó¤Î²óž¤Î¤ß¤Î
¼«Í³ÅÙ¤ò»È¤¦¡£¼ê¼ó¤äÏÓ¤ò»ý¤Á¾å¤²¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¡£
¥Æ¡¼¥Þ´Ø·¸¥á¥â
µ¡Ç½Ê¬Î¥·¿»Ù¾µ
2008ǯÅÙ
¤ªÃΤ餻08/10/17
´Êñ¤Ê¼°¤Ê¤é¡¢
ASCIIMathML¤ò
»È¤Ã¤Æ¡¢TeX·Á¼°¤Ç½ñ¤±¤ë¤è¤¦¤Ë¤·¤Æ¤ß¤Þ¤·¤¿¡£
¤·¤Ð¤é¤¯»î¸³±¿ÍѤ·¤Þ¤¹¡£
$\epsilon_{zz}(x,y,z)=\lim_{dz \to 0}\frac{u_{z}(z+dz)-u_{z}(z)}{dz}
=\frac{\partial u_{z}}{\partial z}$
¹½Â¤ÎÏ³ØÆÃÏÀ
Âç³Ø±¡¤Î¼ø¶È¤òÌÚÍˤÎ14:30-16:00¤Ë¤ä¤ëͽÄê¤Ç¤¹¡£
ÆâÍÆ¤Ï¡¢
¹½Â¤ÎϳØII¤ÎÅö½é¤Î´ðËÜÊý¿Ë¤Ë¤Î¤Ã¤È¤Ã¤Æ¡¢
¡ÖϢ³ÂΤÎÎϳءפˤɤΤ褦¤Ê¶á»÷¤ò¹Ô¤Ã¤Æ¡¢
¤É¤Î¤è¤¦¤Ê¿ô³ØÅª¤ÊƳ½Ð¤ò¹Ô¤¦¤È
¹½Â¤ÎϳؤÎÎÂ¥â¥Ç¥ë¤äΤÎÈùʬÊýÄø¼°¤¬
Ƴ¤«¤ì¤ë¤«¤È¤¤¤¦¤³¤È¤ò¤Á¤ã¤ó¤È¤ä¤ê¤¿¤¤¤È
»×¤¤¤Þ¤¹¡£
ÅÔ¹ç¤Îµö¤¹¿Í¤Ï¡¢¤Ç¤¤ë¤À¤±»²²Ã¤·¤Æ¤¯¤À¤µ¤¤¡£
ʸ¸¥¤Ê¤É
²ÆµÙ¤ß¤Î½ÉÂê
Äó½Ð´ü¸Â
¸å´ü¤Î¥¼¥ß¤ò¿åÍˤ«ÌÚÍˤθá¸å1»þ¤«¤é¤Ë¤·¤¿¤¤¤È»×¤¤¤Þ¤¹¤¬¡¢4¿Í¤ÎÅÔ¹ç¤Ë±þ¤¸¤Æ·è¤á¤Æ¤¯¤À¤µ¤¤
(²ÐÍˤä¶âÍˤâÉÔ²Äǽ¤Ç¤Ï¤Ê¤¤¤Ç¤¹)¡£
¤Ç¡¢10·î¤ÎºÇ½é¤Î¥¼¥ß¤ÎÆü¤Ë²ÆµÙ¤ß¤Î½ÉÂê¤ÎÀ®²Ìʪ1Éô¤ò»æ¤Ë°õºþ¤·¤Æ¸åÆ£¤ËÄó½Ð¤·¤¿¾å¤Ç¡¢
ÆâÍÆ(²¿¤ò¤ä¤í¤¦¤È¤·¤Æ¤¤¤Æ¡¢²¿¤ò¤ä¤Ã¤¿¤é¡¢¤É¤¦¤Ê¤Ã¤¿¤«¡£¤¦¤Þ¤¯¤¤¤Ã¤Æ¤¤¤Ê¤¤¤³¤È¤â´Þ¤á¤Æ¡¢
º£¡¢¤É¤¦¤¤¤¦¾õ¶·¤Ê¤Î¤«)¤ò¥Û¥ï¥¤¥È¥Ü¡¼¥É¤ò»È¤Ã¤Æ´Êñ¤Ëȯɽ¤·¤Æ¤¯¤À¤µ¤¤¡£
¶¦ÄÌ»ö¹à
- ºÇ½ªÅª¤Ë¤Ï¡¢°Ê²¼¤Î³Æ¼«¤Î²ÝÂê¤Ë¤Ä¤¤¤Æ¤È¤ê¤Þ¤È¤á¤¿¤â¤Î¤ò¡¢TeX²½¤·¤Æ¡¢
¤³¤ÎÊÕ¤Ë
ÃÖ¤¤¤Æ¤¢¤ëÅÚÌڳزñÅìËÌ»ÙÉô¥¹¥¿¥¤¥ë¤Ç¤Þ¤È¤á¤Æ¤Û¤·¤¤¡£
¤½¤Î¤¿¤á¤Ë¤Ï¡¢
LaTeX¤Î´ðËÜŪ¤Ê»È¤¤¤«¤¿
¤ä
gnuplot¤äXfig¤Î¿Þ¤òLaTeX¤Ë¼è¤ê¹þ¤àÊýË¡¤Ë¤Ä¤¤¤Æ»î¹Ôºø¸í¤·¤Ê¤¬¤éÎý½¬¤¹¤ëɬÍפ¬¤¢¤ë¡£
´ÏÀ³µÍס¢Â´ÏÀËÜÂΡ¢ÅìËÌ»ÙÉô¸¶¹Æ¤Ê¤É¤Ï¡¢¤³¤ÎÊýË¡¤ÇºîÀ®¤·¤Æ¤â¤é¤¤¡¢
pdf²½
¤¹¤ë¡£²ÆµÙ¤ß¤Î½ÉÂê¤Ç¤Ï¤Ê¤¤¤¬¡¢Â´ÏÀȯɽ¤ä³Ø²ñȯɽ¤Î¥¹¥é¥¤¥É¤Ï¡¢LaTeX¤Çºî¤Ã¤Æ¤âOpenOffice?¤Çºî¤Ã¤Æ¤â¤è¤¤¡£
- ʸ¸¥¸¡º÷¡¢¤½¤Î¾¤Ç´ØÏ¢Ê¸¸¥¤äÀè¹Ô¸¦µæ¤ò¿ï»þÄ´ºº¤¹¤ë¤³¤È¡£
- ¤¢¡¢¤¢¤ÈÊÒ»ý¤ÁΤÎ8ÀáÅÀ¥·¥§¥ëÍ×ÁǤβòÀϤǡ¢·å¹âÊý¸þ¤òÍ×ÁÇʬ³ä¤·¤¿¤é¡¢
¥Æ¥£¥â¥·¥§¥ó¥³Î¤Τ¿¤ï¤ß¤Ë¶áÉÕ¤¯¤«¤É¤¦¤«¤Î½ÉÂê¤â¤¢¤Ã¤¿¡£
´¢²°
- ¥À¥¤¥ä¥«¥Ã¥È´Ì(ºàÎÁ¤Ï¤µ¤·¤¢¤¿¤ê¹Ýºà¤Ç¤â¥¢¥ë¥ß¤Ç¤â)¤Î²òÀϤò¤¹¤ë¡£
- PCCP¥·¥§¥ë¤Î¤È¤³¤Ë¤¢¤ëdaiya.f¤Èble6ccx.f¤ò»È¤¦ÊýË¡¤ò¹©Æ£¤µ¤ó¤«¤é¶µ¤ï¤ë¤Ê¤É¤·¤Æ¤Û¤·¤¤¡£
- daiya.f¤ÎÍ×ÁÇʬ³ä¤Ï¾¯¤Ê¤¤¤Î¤Ç¡¢¤³¤ì¤ÎÍ×ÁÇʬ³ä¤òÁý¤ä¤¹ÊýË¡¤ò(°ð²Ù¤µ¤ó¤ä¹©Æ£¤µ¤ó¤È°ì½ï¤Ë?)¹Í¤¨¤Æ¤Û¤·¤¤¡£
- daiya.f¤ò½ñ¤´¹¤¨¤ÆÍ×ÁÇʬ³ä¤òÁý¤ä¤»¤ë¤³¤È¤¬Ë¾¤Þ¤·¤¤¤¬¡¢¸½¹Ô¤Îdaiya.f¤Î½ÐÎÏ(daiya.obf)¤ò
blender2.40¤ËÆÉ¤ß¹þ¤ó¤ÇÍ×ÁÇʬ³ä¤òºÙ¤«¤¯¤·¤¿obj¥Õ¥¡¥¤¥ë¤òÅǤ½Ð¤¹¤È¤¤¤¦¤ä¤êÊý¤Ç¤â¤è¤¤¡£
- ŬÅö¤Ê±ßÅû(¤Þ¤º¤ÏÃñ¥Ï¥¤´Ì¤°¤é¤¤¤ÎÂ礤µ¤Î¤â¤Î¤òÂоݤȤ·¤Æ¤â¤è¤¤)¤ËÂФ·¤Æ¡¢°ìü¸ÇÄê¤Ç¡¢¼«Í³Ã¼Â¦¤«¤é°µ½Ì¤ò²Ã¤¨¤ë¡£
- Ç˲õ¥â¡¼¥É¤¬¤É¤¦¤Ê¤ë¤«¤Ï¤ï¤«¤é¤Ê¤¤¤¬¡¢ºÂ¶þ²òÀϤâ¹Ô¤Ã¤Æ¤ß¤Æ¡¢¤â¤·ºÂ¶þ¤·¤¿¤éºÂ¶þ²Ù½Å¤ÈºÂ¶þ¥â¡¼¥É¤òÄ´¤Ù¤ë¡£
- ºÂ¶þ¥â¡¼¥É¤òcgx¤ÇÉÁ¤«¤»¤ëÊýË¡¤Ï¡¢tasu.f»²¾È¡£¤â¤·¤«¤·¤Æº£¤Îcgx¤À¤È¡¢"add displacements"¤ß¤¿¤¤¤Ë"add mode"¤â¤Ç¤¤¿¤ê
¤¹¤ë¤À¤í¤¦¤«¡£
- ÊѲ½¤µ¤»¤ë¥Ñ¥é¥á¡¼¥¿¤È¤·¤Æ¤Ï¡¢¹â¤µÊý¸þ¤Î¥À¥¤¥ä¸Ä¿ô¡¢¼þÊý¸þ¤Î¥À¥¤¥ä¸Ä¿ô¤òÊѤ¨¤Ê¤¬¤é¡¢ºÂ¶þ²Ù½Å¤¬¤É¤¦ÊѤï¤ë¤«¤òÄ´¤Ù¤ë
(Èæ³ÓÂоݤϡ¢ÀÞ¤êÌܤΤʤ¤¾õÂ֤αßÅû)¡£
x¼´¤¬¼þÊý¸þ¤Î¥À¥¤¥ä¿ô¡¢y¼´¤¬¹â¤µÊý¸þ¤Î¥À¥¤¥ä¿ô¡¢z¼´¤¬ºÂ¶þ²Ù½Å¤ß¤¿¤¤¤Ê3¼¡¸µ¥×¥í¥Ã¥È¤â¤¤¤¤¤«¤âÃΤì¤Ê¤¤¡£
- ÃÆÀ°è¤ÇºÂ¶þ¤òµ¯¤³¤·¤½¤¦¤Ë¤Ê¤¤¾ì¹ç¤Ï¡¢¤É¤ÎÉôʬ¤Î±þÎÏ(¥ß¡¼¥¼¥¹±þÎÏ)¤¬¹ßÉú±þÎϤË㤹¤ë¤«¤òÄ´¤Ù¤ë¡£
°ð²Ù
- ÀÞ¤ê¾ö¤ß±ßÅû(ºàÎÁ¤Ï¤µ¤·¤¢¤¿¤ê¹Ýºà¤Ç¤â¥¢¥ë¥ß¤Ç¤â)¤Î²òÀϤò¤¹¤ë¡£
- PCCP¥·¥§¥ë¤Î¤È¤³¤Ë¤¢¤ëtubure.f¤Èble6ccx.f¤ò»È¤¦ÊýË¡¤ò¹©Æ£¤µ¤ó¤«¤é¶µ¤ï¤ë¤Ê¤É¤·¤Æ¤Û¤·¤¤¡£
- tubure.f¤ÎÍ×ÁÇʬ³ä¤Ï¾¯¤Ê¤¤¤·¡¢ÀÞ¤ê¾ö¤ß¤ÎÂÓ¤¬£²Ãʤ֤󤷤«¤Ê¤¤¤Î¤Ç¡¢¤³¤ì¤ÎÍ×ÁÇʬ³ä¤ÈÀÞ¤ê¾ö¤ßÃÊ¿ô¤òÁý¤ä¤¹ÊýË¡¤ò(´¢²°¤µ¤ó¤ä¹©Æ£¤µ¤ó¤È°ì½ï¤Ë?)¹Í¤¨¤Æ¤Û¤·¤¤¡£
- °Ê²¼¤Ë½Ò¤Ù¤ë¤è¤¦¤Ë1¤Ä¤ÎÀÞ¤êÌÜĺÅÀÉôÉÕ¶á¤Î¶ÉÉôºÂ¶þ¤òÄ´¤Ù¤ë¤³¤È¤¬1¤Ä¤Î´Ø¿´»ö¤Ê¤Î¤Ç¡¢ÀÞ¤ê¾ö¤ßÃÊ¿ô¤Ï2ÃʤǤ⤤¤¤¤À¤¬¡¢2ÃʤÀ¤È²Ù½ÅºÜ²ÙÀáÅÀ¦¤Ë±þÎϽ¸Ãæ¤È¤«¤Î±Æ¶Á¤¬½Ð¤½¤¦¤Ê¤Î¤Ç¡¢¤»¤á¤Æ4ÃÊ(¸ÇÄêü/\/\¢ª)¤°¤é¤¤¤Ï¤¢¤Ã¤¿Êý¤¬¤¤¤¤¤Î¤Ç¤Ï¤Ê¤¤¤«¤È»×¤¦¡£
- tubure.f¤ò½ñ¤´¹¤¨¤ÆÍ×ÁÇʬ³ä(¤Ï2Çܤ°¤é¤¤¤ÎºÙ¤«¤µ¤Ç¸ÇÄê¤Ç¤â¤¤¤¤¤±¤É)¤äǤ°Õ¤ÎÃÊ¿ô¤ò¼«Æ°¤ÇÀßÄê¤Ç¤¤ë¤³¤È¤¬Ë¾¤Þ¤·¤¤¤¬¡¢¸½¹Ô¤Îtubure.f¤Î½ÐÎÏ(daiya.obf)¤òblender2.40¤ËÆÉ¤ß¹þ¤à¤Ê¤É¤·¤Æ¼êư¤ÇÍ×ÁÇʬ³ä¤òºÙ¤«¤¯¤·¤¿¤êÃÊ¿ô¤òÁý¤ä¤·¤¿obj¥Õ¥¡¥¤¥ë¤òÅǤ½Ð¤¹¤È¤¤¤¦¤ä¤êÊý¤Ç¤â¤è¤¤(¤³¤ÎÊդΥΥ¦¥Ï¥¦¤Ï¹©Æ£¤µ¤ó¤¬ÃΤäƤë)¡£
- ÀÞ¤ê¾ö¤Þ¤ì¤¿Âæ·Á¤ÎÊ¿ÌÌÉô¤¬¿¤Ó¤¿¤ê½Ì¤ó¤À¤ê¶Ê¤¬¤Ã¤¿¤ê¤»¤º¤Ë¹äÂΤǤ¢¤ì¤Ð¡¢ÀÞ¤ê¾ö¤ß±ßÅû¤Ï¹â¤µ0¤Î¤Ô¤Ã¤Á¤ã¤ó¤³¤Î¾õÂ֤ˤʤ롣¤³¤Î¾õÂÖ¤ò½é´ü¾õÂ֤Ȥ·¤Æ¡¢±ßÅû¤Î°ìü¤ò¸ÇÄꤷ¡¢Â¾Ã¼¤ò°ú¤ÃÄ¥¤Ã¤Æ¤¤¤Ã¤Æ¡¢ÀÞ¤êÌܤ¬¤Ä¤Ö¤ì¤¿¤ê¤Î¶ÉÉôºÂ¶þ¤Î¤è¤¦¤Ê¸½¾Ý¤ò´Ñ»¡¤¹¤ë¤¿¤á¤ËºÂ¶þ²òÀϤ¹¤ë¡£¤â¤·¤«¤·¤Æ¹â¤µ0¤«¤é¤Î²òÀϤ¬¤¦¤Þ¤¯¤¤¤«¤Ê¤¤¾ì¹ç¤Ï¡¢½é´üÉÔÀ°¤È¤·¤Æ¤¢¤ëÄøÅ٤ι⤵¤òÍ¿¤¨¤Æ¤â¤è¤¤
(¤³¤Î¾ì¹ç¡¢°µ½Ì¤·¤Æ¤â¤¤ì¤¤¤ËÀÞ¤ê¾ö¤á¤Ê¤¯¤Ê¤ë¤Î¤«¤Ê¡£ÀÞ¤ê»æ¤ÎÌÏ·¿¤ÇÀÞ¤êÌܤγÑÅÙ¤¬°¤¤¤È¤Á¤ã¤ó¤È¤Ô¤Ã¤Á¤ã¤ó¤³¤Ë¤Ê¤é¤Ê¤¤¤è¤Í)¡£
¤Ä¤Þ¤ê¡¢¤Ô¤Ã¤Á¤ã¤ó¤³¤Î´°Á´·Á¤Î¾ì¹ç¤Ï¡¢¤É¤³¤Þ¤Ç°ú¤ÃÄ¥¤Ã¤Æ¤âÂç¾æÉפ«(¶ÉÉôºÂ¶þ¤¬µ¯¤¤Ê¤¤¤«)¡¢
ºÇ½é¤«¤é¹â¤µ¤Î¤¢¤ëÉÔ´°Á´·Á¤Î¾ì¹ç¤Ï¡¢¤½¤ì¤Ë²Ã¤¨¤Æ¤É¤³¤Þ¤Ç²¡¤·¾ö¤ó¤Ç¤âÂç¾æÉפ«(¶ÉÉôºÂ¶þ¤òµ¯¤³¤µ¤Ê¤¤¤«)¤È¤¤¤¦¤³¤È¤â
´Ø¿´»ö¤Ë²Ã¤ï¤ë¤«¤â¡£
- ŬÅö¤Ê±ßÅû(¤Þ¤º¤ÏÃñ¥Ï¥¤´Ì¤°¤é¤¤¤ÎÂ礤µ¤Î¤â¤Î¤òÂоݤȤ·¤Æ¤â¤è¤¤)¤ËÂФ·¤Æ¡¢°ìü¸ÇÄê¤Ç¡¢¼«Í³Ã¼Â¦¤«¤é°úÄ¥¤ò²Ã¤¨¤ë¡£
- Ç˲õ¥â¡¼¥É¤¬¤É¤¦¤Ê¤ë¤«¤Ï¤ï¤«¤é¤Ê¤¤¤¬¡¢ºÂ¶þ²òÀϤâ¹Ô¤Ã¤Æ¤ß¤Æ¡¢¤â¤·¶ÉÉôºÂ¶þ¤·¤¿¤éºÂ¶þ²Ù½Å¤ÈºÂ¶þ¥â¡¼¥É¤òÄ´¤Ù¤ë¡£
- ºÂ¶þ¥â¡¼¥É¤òcgx¤ÇÉÁ¤«¤»¤ëÊýË¡¤Ï¡¢tasu.f»²¾È¡£¤â¤·¤«¤·¤Æº£¤Îcgx¤À¤È¡¢"add displacements"¤ß¤¿¤¤¤Ë"add mode"¤â¤Ç¤¤¿¤ê
¤¹¤ë¤À¤í¤¦¤«¡£
- ÊѲ½¤µ¤»¤ë¥Ñ¥é¥á¡¼¥¿¤È¤·¤Æ¤Ï¡¢¼þÊý¸þ¤ÎÂæ·Á¤Î¸Ä¿ô¡¢Âæ·Á¤Î¾åÄìÉô¡¢²¼ÄìÉô¡¢¹â¤µ¤ÎÈæÎ¨¤Ê¤É¤òÊѤ¨¤Ê¤¬¤é¡¢¶ÉÉôºÂ¶þ²Ù½Å¤¬¤É¤¦ÊѤï¤ë¤«¤òÄ´¤Ù¤ë(Èæ³ÓÂоݤϡ¢ÀÞ¤êÌܤΤʤ¤¾õÂ֤αßÅû)¡£
- ÃÆÀ°è¤Ç¶ÉÉôºÂ¶þ¤òµ¯¤³¤·¤½¤¦¤Ë¤Ê¤¤¾ì¹ç¤Ï¡¢¤É¤ÎÉôʬ¤Î±þÎÏ(¥ß¡¼¥¼¥¹±þÎÏ)¤¬¹ßÉú±þÎϤË㤹¤ë¤«¤òÄ´¤Ù¤ë¡£
¾®ÎÓ
ÆÃÄê¤Î¿Í¹©±ÒÀ±¤ÎÆÃÄê¤ÎÆÃÀ(¿¶Æ°ÆÃÀ¤È¤«)¤òÄ´¤Ù¤Æ¤ß¤Þ¤·¤¿¤È¤¤¤¦¤À¤±¤Ç¤ÏÏÀʸ¤Ë¤Ê¤é¤Ê¤¤¤Î¤Ç¡¢
¤è¤ê°ìÈÌŪ¤Ë½ÀÆð±§Ã蹽¤(³°ÎÏ¥ì¥Ù¥ë¤¬¾®¤µ¤¯Èó¾ï¤ËÇö¤¤Éôºà¤«¤é¤Ê¤ë¥·¥§¥ë¹½Â¤¤È¤«)¤ËÆÃͤÎÌäÂê»ö¹à
(²¹ÅÙº¹¤Ë¤è¤ë¿¶Æ°¤äºÂ¶þ¤È¤«)¤Ë´Ø¤¹¤ë¥Æ¡¼¥Þ¤òʸ¸¥¸¡º÷¤Ê¤É¤Ç¸«ÉÕ¤±¤Æ¤¯¤ëɬÍפ¬¤¢¤ë¤È»×¤¤¤Þ¤¹¡£
¤Ç¡¢²¾¤Ë¡¢±§Ã蹽¤¤Î¤¢¤ë¥Ñ¥é¥á¡¼¥¿(Çö¤µ¤È¤«¡¢Î¹½Â¤¤Ç¤¤¤¦ºÙÄ¹Èæ¥Ñ¥é¥á¡¼¥¿¤ß¤¿¤¤¤Ê¤â¤Î¤È¤«¡¢Éý¸üÈæ¤È¤«¡¢
¤¹¤Ù¤Æ¤ÎÈÄÉôºà¤ÎÌÌÀѤÈÊ¿¶Ñ¸ü¤µ¤ÈÂÎÀѤÎÈæÎ¨¤È¤«¡¢Ã±°Ì»þ´ÖÅö¤¿¤ê¤Î²¹ÅÙº¹¤È¤«)¤Ë
ÂФ¹¤ë¿¶Æ°ÆÃÀ(¸ÇÍ¿¶Æ°¿ô)¤È¤«¤òÄ´¤Ù¤ë¤³¤È¤¬°ì¤Ä¤Î¥Æ¡¼¥Þ¤Ë¤Ê¤êÆÀ¤ë¤È¤·¤Æ¡¢
´Êñ¤Ê¿Í¹©±ÒÀ±(¤Þ¤¿¤Ï±§Ã蹽¤)¥â¥Ç¥ë(ñ¤Ê¤ëÈ¢¤È¤«ÈĤȤ«¤Îñ½ã¤Ê¥â¥Ç¥ë)¤ËÂФ·¤Æ¡¢
¤½¤Î¥Ñ¥é¥á¡¼¥¿¤¬¤¢¤ëÃͤ˶áÉÕ¤¯¤È¸ÇÍ¿¶Æ°¿ô¤¬¾®¤µ¤¯¤Ê¤ë¤È¤«¡¢¤½¤¦¤¤¤¦
(¼ÂÍÑŪ¤«¤âÃΤì¤Ê¤¤)Ã諤ò¸«½Ð¤»¤¿¤È¤·¤Æ¡¢¤½¤ÎÃθ«¤Î³èÍÑÎã¤Î
¥Ç¥â¥ó¥¹¥È¥ì¡¼¥·¥ç¥ó¤È¤·¤Æ¡¢¿Í¹©±ÒÀ±¹½Â¤¤Î¼ÂÎã¤ËÂФ·¤Æ¤½¤Î¥Ñ¥é¥á¡¼¥¿¤òÄ´À᤹¤ë¤³¤È¤Ç
¶ñÂÎŪ¤Ê±§Ã蹽¤¤ÎÀ߷פκݤ˸ÇÍ¿¶Æ°ÆÃÀ¤òÄ´À¤¹¤ë¤Î¤Ëº£²ó¤Îȯ¸«
(¤¢¤ë¥Ñ¥é¥á¡¼¥¿¤¬¤¢¤ëÃͤ˶áÉÕ¤¯¤È¿¶Æ°ÆÃÀ¤¬¤É¤¦¤Ê¤ë)¤¬ÍøÍѤǤ¤ë¤È¤¤¤Ã¤¿
¼ÂÁ©Åª¤Ê¹Í»¡¤ò¤¹¤ë¤È¤¤¤Ã¤¿´¶¤¸¤Ç¤·¤ç¤¦¤«¡£
- pccp¥·¥§¥ë?¤Î¤È¤³¤Ë¤¢¤ëble6ccx.f¤òblender2.46¤Îobj¥Õ¥¡¥¤¥ë¤òÆÉ¤ß¹þ¤à¤è¤¦¤Ë²þ¤¤¹¤ë¤Î¤Ï¡¢
¤½¤¦Æñ¤·¤¯¤Ê¤¤¤è¤¦¤Ê¡£
- ¤¢¤ë¤¤¤Ï¡¢blender2.46¤Îobj¥Õ¥¡¥¤¥ë¤òvi¤Ç³«¤¤¤Æ¼êư¤Ç¡¢blender2.40¤Îobj¥Õ¥¡¥¤¥ë·Á¼°¤Ë½ñ¤´¹¤¨¤ë
¤³¤È¤â¤Ç¤¤Ê¤¯¤Ï¤Ê¤¤¤È»×¤¦¡£ÀáÅÀÈֹ椬0ÈÖ¤«¤é¤Ç¤Ï¤Ê¤¯1ÈÖ¤«¤é»Ï¤Þ¤ë¤È¤«¤½¤¦¤¤¤¦¤Î¤Ï¡¢ble6ccx.f¤ÎÊý¤ÇÂбþ¤·¤¿Êý¤¬
¤¤¤¤¤À¤í¤¦¤±¤É¡£
¹Æâ
- ÂçÅĹâÊ¡¼Â¸³¥á¥â
- µîǯ¤Î¹âÊ¡¤µ¤ó¤ÈÂÀÅĤµ¤ó¤ÎÏÀʸ¤òÆÉ¤ó¤Ç¡¢¹âÊ¡¤µ¤ó¤ÈÂÀÅĤµ¤ó¤¬¥¹¥®ºà¤ËÂФ·¤Æ¹Ô¤Ã¤¿°ìÏ¢¤Î²òÀϤò¡¢
ÀèÆü¤Î¥Þ¥Äºà¤ËÂФ·¤Æ¤â¹Ô¤Ã¤Æ²¼¤µ¤¤¡£
Âç¹õ²°¤µ¤ó¤¬ÏÀʸ¤ò½ñ¤¯¤Î¤Ç(¤¿¤Ö¤ó)¡¢¤½¤ì¤ò¼êÅÁ¤¤¤Ê¤¬¤é¡¢¤ä¤êÊý¤ò³Ø¤ó¤Ç¤¯¤À¤µ¤¤¡£
ÆÀ¤é¤ì¤¿ºàÎÁÄê¿ô¤Ë¤â¤È¤Å¤¤¤Æ¡¢ccx¤Ç¤Î¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤â¤ä¤Ã¤Æ¤Û¤·¤¤¤ó¤À¤±¤É¡¢¤³¤ÎÊÕ¤ÏÂç¹õ²°¤µ¤ó¤ÈÁêÃÌ¡£
¥¼¥ß¤Ë¤Ä¤¤¤Æ
- ¥¼¥ß¤Ï¿åÍË13:00¤«¤é
- ²ÆµÙ¤ßÃæ¤Ï¥¼¥ß¤ÏµÙ¤ß¡£¤½¤ÎÂå¤ï¤ê½ÉÂê¤ò½Ð¤¹¡£
´ÏÀÆü»ï¤Ë¤Ä¤¤¤Æ
- ¥¼¥ß¤Ø¤Î»²²Ã¤ò´ÏÀÆü»ï¤Ë½ñ¤¤¤Æ¤Ï¤À¤á
- ³°¹ñ¸ìʸ¸¥¹ØÆÉ¤È¤«Â´ÏÀ¥×¥í¥Ý¡¼¥¶¥ë¤Î¼ø¶È»þ´Ö¤È¤·¤Æ¿ô¤¨¤é¤ì¤Æ¤¤¤ë¤â¤Î¤ò½ÅÊ£¤·¤Æ¤Ï¥À¥á¤È¤¤¤¦°ÕÌ£
- ´ÏÀ¤Ë´Ø·¸¤·¤¿¥¼¥ß¤Î²ÝÂê¤Ê¤É¤ò¹Ô¤Ã¤¿ºî¶È»þ´Ö¤ò½ñ¤¯¤Î¤Ï¤¤¤¤¤¬
¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤ÎÎý½¬
- abcdefghijklmnopqrstuvwxyz
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- aBcDeFgHiJkLmNoPqRsTuVwXyZ
- AbCdEfGhIjKlMnOpQrStUvWxYz?
- 3.1415926535(5²ó)
- 1.7320508075(5²ó)
ABCDEFG¤Ê¤Éº¸¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ï±¦¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¡¢
HIJKLMN¤Ê¤É±¦¼ê¤Çʸ»ú¤òÂǤĤȤ¤Ïº¸¼ê¤Î¾®»Ø¤Ç
SHFT¥¡¼¤ò²¡¤µ¤¨¤ë¡£
´ðËÜŪ¤ËÊÒ¼ê¤ÇSHFT¤Èʸ»ú¥¡¼¤ÎÆó¤Ä¤ò²¡¤µ¤¨¤ë¤È¤¤¤¦
¤³¤È¤Î¤Ê¤¤¤è¤¦¤Ë¡£
| ·î | ²Ð | ¿å | ÌÚ | ¶â |
¸áÁ° | | | | ¡ß | |
¸á¸å | ¡ß | ¡ß | | ¡ß | ¡ß |
2007ǯÅÙ
ʸ¸¥¸¡º÷
¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹
Á°Æü¤Þ¤Ç¤Î»Å»ö
- ÂÐÀï¼Ô½ç¤ò·è¤á¡¢ÌΤ»æ¤ËÂÐÀïɽ¤ò¥Þ¥¸¥Ã¥¯¤Ç½ñ¤¤¤ÆÊɤËŽ¤ë¤ó¤À¤±¤É¡¢
¥Þ¥¸¥Ã¥¯¤¬Êɤ˼̤ë¤Èº¤¤ë¤Î¤ÇÌΤ»æ¤Î΢¤Ë¿·Ê¹»æ¤«¤Ê¤ó¤«¤òŽ¤ë¡£
- ¤ª¤â¤ê¤Ë¤Ò¤â¤òÉÕ¤±¤ë
- ¥Ý¥¹¥¿¡¼¤òޤë(¼Â¸³¼¼¤Î¥É¥¢£²²Õ½ê¤Ë¤Ï¡Ö£²³¬¤Ç¤¹¡×¤òޤë)
- »î¸³ÂÎ10¶¶¤òʤ٤ë¾ì½ê¤òÍѰդ¹¤ë(ï¤Î¶¶¤«Ê¬¤«¤ë¤è¤¦¤Ë¤¹¤ë)
- µîǯ¤Î¥Ý¥¹¥¿¡¼¤òޤë(°ìÉô¾Êά²Ä)
- ¥É¥¢Â¦¤Ë¥Æ¡¼¥Ö¥ë¤ò2¤Ä¤Ê¤é¤Ù¡¢·å¶¶¡¢µ¿»÷¥¢¡¼¥Á¡¢¥¢¡¼¥Á¶¶¡¢¤Ä¤ê¶¶Åù¤òŸ¼¨)
- ¶¦ÍÑLinux¥Ñ¥½¥³¥ó¤ò¤É¤Ã¤«¤ËÃÖ¤¤¤Æ¥Ç¥¹¥¯¥È¥Ã¥×¤Îspa¥¢¥¤¥³¥ó¤ò¥¯¥ê¥Ã¥¯¤·¤Ætotem-xine¤Çµîǯ¤Î
ÁϤ¹©Ë¼¤Îư²è¤ò¥ê¥Ô¡¼¥ÈºÆÀ¸¤·¤Æ¤ª¤¯
ÅöÆü¤Î·¸
- ¼Ì¿¿·¸(»î¸³Á°¤Î¾õÂÖ¡¢ºÜ²ÙÃæ¡¢Ç˲õľ¸å¤Î¾õÂÖ¤ò»£±Æ)
- ¥Ó¥Ç¥ª·¸(»î¸³ºÇÃæ¤ÎÍͻҤò»£±Æ)
- µÏ¿·¸(¼«½Å¡¢Êø²õ²Ù½Å¡¢Êø²õ²Ù½Å/¼«½Å¤Ê¤É¤Î·ë²Ì¤òÌΤ»æ¤ÈWiki¤ËµÏ¿)
- »ÅÀÚ¤êÌò(¤¨¤¨¡¢¤Ç¤Ï¤³¤ì¤«¤éÇ˲õ¼Â¸³¤ò»Ï¤á¤Þ¤¹¤Î¤Ç¡¢¡¢¡¢)
¸å´ü¤Î¥¼¥ß¤ÎÍËÆüÄ´À°
- ¿åÍË13:00
- ¸åÆ£¤ÎÂÌÌÜ¤ÊÆü
- ·îÍË?´ðÁÃʪÍý¼Â¸³¤Ã¤Æ²¿»þ¤«¤é?
- ²ÐÍË10:00-12:00¹âÀì±þÍÑʪÍý
- ¿åÍË8:50-10:20ÁϤ¹©Ë¼¼Â½¬(¤¢¤ë¤¤¤Ï¡¢¤ï¤¶¤È¥¼¥ß¤È¤«¤Ö¤»¤Æ¤â¤¤¤¤¤«¤â¡£ºÜ²Ù»î¸³¤Î¤È¤¤È¤«)
- ¿åÍË14:30-16:00¾ðÊó½èÍý¤Îµ»Ë¡
²ÆµÙ¤ß¤Î½ÉÂê
Calculix
- ÂÀÅÄ:¼Â¸³¤ÈƱ¤¸ÃÇÌ̤òPLASTIC¤òÆþ¤ì¤Æ²ò¤¤¤Æ¤ß¤ë
- ¹âÊ¡:Âç¹õ²°¤µ¤ó¤Î¼êÅÁ¤¤
- ËÜÅÄ:±ß´É¤ÎɽÌ̤˱è¤Ã¤Æ8ÀáÅÀ¥·¥§¥ëÍ×ÁǤ«¤Ê¤ó¤«¤Ç¥â¥Ç¥ë²½¤Ç¤¤ë¤«
- »³ºê:ºÂ¶þ¸å¤ÎÊѰÌÎ̤ò½é´üºÂɸ¤Ë¤·¤Æ¡¢ÊÑ·Á¿Þ¤òcgx¤ÇÉÁ¤±¤ë¤«
Xfig+LaTeX
- ¸åÆ£¤Î¼êÉÁ¤¤Î²èÁü(Î㤨¤Ð¸µ¥Õ¥¡¥¤¥ë̾:hoge.png)¤ò¡¢Xfig¤ÇÉÁ¤Ä¾¤·¡¢
ºîÀ®¼Ô¤Î̾Á°¤Ë±þ¤¸¤Æ(ÂÀÅÄ:oo, ¹âÊ¡:ta, ËÜÅÄ:ho, »³ºê:ya)hoge07oo.fig¤ß¤¿¤¤¤Ë
̾Á°¤òÉÕ¤±¤ÆÊݸ¡£
- LaTeX eepic¤ËExport¤·¤Æ¡¢hoge07oo.tex¤È¤·¤ÆÊݸ¡£
- ŬÅö¤Êtex¥Õ¥¡¥¤¥ë¤ËÆÉ¤ß¹þ¤ó¤Ç¡¢Ê¸»úÎó¤ò½¤Àµ¡£
- ¹½Â¤Îϳإƥ¥¹¥È¤Î¥Ú¡¼¥¸
¤Ë¼Õ¼¤È¤·¤Æ²èÁüºî¼Ô¤Î¤ß¤Ê¤µ¤ó¤Î̾Á°¤òºÜ¤»¤ë¤¬¡¢
fig¥Õ¥¡¥¤¥ë¤ätex¥Õ¥¡¥¤¥ë¤Ï¸ø³«¤·¡¢Ã¯¤Ç¤â¼«Í³¤Ë»È¤Ã¤Æ¤¤¤¤¤³¤È¤Ë¤·¤¿¤¤
(¤Î¤Ç¡¢¤³¤Î¾ò·ï¤Ë¤É¤¦¤·¤Æ¤â½¾¤¤¤¿¤¯¤Ê¤¤¾ì¹ç¤Ï¡¢¤³¤Î½ÉÂê¤Ï¤·¤Ê¤¯¤Æ¤â¤¤¤¤)¡£
¥¹¥Ñ¥²¥Ã¥Æ¥£¡¼¤Î¶¶
- 1¿Í1¶¶(10/20¤Î¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹¤ÇÊèÀ詤¹¤ë)
- ´°À®Éʤμ«½Å¡§200g°Ê²¼
- ¥¹¥Ñ¥ó¡§60cm°Ê¾å
- Êø²õ²Ù½Å¡¿¼«½Å¤Ç¶¥¤¦
- ¥¹¥Ñ¥²¥Ã¥Æ¥£¡¼¡§¤ä¤Þ¤ä¤ÇÇä¤Ã¤Æ¤ëVALLE DEL SOLE(4kg¤Ç400±ß¤°¤é¤¤¤Î)
- ½Ö´ÖÀÜÃåºÞ¡§100±ß¥·¥ç¥Ã¥×¤Î¥Ä¥ê¥í¥ó ¥×¥í»ÅÍÍ3g
- ÎÂÃæ±ûÉô¤ËºÜ²ÙÍѤβٺî¤ê¤Ò¤â(Éý47mm)¤òÄ̤»¤ë·ä´Ö¤òÀߤ±¤ë
- ºÜ²ÙÉô¤ÏÎÂÃæ±û¤Ç¤¢¤ì¤Ð²¼Éô¤Ç¤â¾åÉô¤Ç¤â¹½¤ï¤Ê¤¤
¼«Âð¤ä¥¢¥Ñ¡¼¥È¤Ç¶¶¤òºî¤ë¿Í¤Ï¡¢¤¸¤å¤¦¤Ö¤ó¤Ë´¹µ¤¤·¤Ê¤¬¤éºî¶È¤·¤Æ²¼¤µ¤¤¡£ ¥¢¥í¥ó¥¢¥ë¥Õ¥¡¤Ê¤éÆÇÀ¤ÏÄ㤽¤¦¤Ç¤¹¤¬¡¢¥Ä¥ê¥í¥ó¤Ï¥·¥¢¥Î¥¢¥¯¥ê¥ì¡¼¥È°Ê³°¤ÎÀ®Ê¬¤¬¤É¤ÎÄøÅÙ´Þ¤Þ¤ì¤Æ¤¤¤ë¤«¤Ê¤ÉÉÔÌÀ¤Ê¤Î¤Ç¡£
½ÉÂê6/4¤Þ¤Ç
ccxkataz.f¤Ç
²ò¤¤¤¿ÊÒ»ý¤ÁÎ¤Τ¿¤ï¤ß¤ÈPL^{3}/(3EI)¤òÈæ³Ó¤¹¤ë¡£
½ÉÂê5/28¤Þ¤Ç
ÅöÌ̤βÝÂê
- ¸åÆ£ÈÉÂåɽ
- ¥Ñ¥½¥³¥ó¥¼¥ß¤ÎÍËÆü
| ·î | ²Ð | ¿å | ÌÚ | ¶â |
¸áÁ° | ¡ß | ¡ß | ¡ß | | |
¸á¸å | Âè1¸õÊä | ¡ß | ¡ß | 14:20Á°¤Þ¤Ç | ¡ß |
´ÏÀ¥Æ¡¼¥Þ
- ´ÏÀ¥Æ¡¼¥Þ°Æ(4¸õÊä)
- ¹ÝÈÄÁÞÆþ½¸À®ºà¤Î¼Â¸³¤È²òÀÏ(ÌÚºà¤È¹Ýºà¤Î¥ä¥ó¥°·¸¿ôÈæ¤Î±Æ¶Á)(º´¡¹ÌÚ¤µ¤ó¡¢¸åÆ£)
- ¼Â¸³¤ÏºÇÄã1¿Í¤ÏôÅö¤·¤Æ¤Û¤·¤¤¡£¼Â¸³¤Ë¤ÏôÅö¼Ô°Ê³°¤â²Ë¤Ê¸Â¤ê¼êÅÁ¤¤Ç½Âå¤Ë¹Ô¤¯¡£ÀéÅĤµ¤ó¤Î¼Â¸³¤âŬµ¹ ¼êÅÁ¤¦¡£(ÂÀÅÄ)
- ¹ÝÈÄÁÞÆþ½¸À®ºàÎ¤Τ»¤óÃÇÊäÀµ·¸¿ô¤òÇöÌÚÀèÀ¸¤Î¤ä¤êÊý¤ÇÌÌÀÑÀÑʬ¤«¤éµá¤á¤¿Ãͤȡ¢Í¸ÂÍ×ÁÇË¡¤«¤é¤ÎµÕ»»ÃͤȤÇÈæ³Ó(sounyuuk.f)(¹âÊ¡)
- ¹Ý´É¤ÎÄóÅôºÂ¶þ(¾Ý¤Îº¶þ):ÆüËܹݹ½Â¤¶¨²ñ¥é¥¤¥Ö¥é¥ê¡¼Vol10,No39: ¾Ý¤Îº¶þ¤Ë¤ª¤±¤ëÍýÏÀ¤È¼Â¸³»ö¼Â¤ÎЪΥ¤Î¤è¤¦¤ÊÌäÂê¤òCalculiX¤Ç²òÀÏ(ËÜÅÄ)
- ²£¤Í¤¸¤ìºÂ¶þ¤Î¿ôÃͲòÀÏ: ÂÀû¤¤¤È¼Â¸³ÃͤÈΩÂÎÍ×ÁÇFEM²ò¤¬²òÀϲò¤äÎÂÍ×ÁÇFEM²ò¤«¤éÎ¥¤ì¤ë·¹¸þ¤¬¡¢
¤¿¤Þ¤¿¤Þ¼Â¸³¸íº¹¤ÈΩÂÎÍ×ÁÇFEM¤Î¿ôÃÍ¸íº¹¤Î·¹¸þ¤¬»÷¤Æ¤¤¤ë¤«¤é¤Ê¤Î¤«¡¢¼Â¤Ï¸íº¹¤Î¤»¤¤¤Ç¤Ï¤Ê¤¤¤Î¤«¡£CalculiX¤Î
ΩÂÎÍ×ÁǤÎÀþ·ÁºÂ¶þ²òÀϤǤϤʤ¯¡¢½é´üÉÔÀ°¤òÍ¿¤¨¤ÆÊÑ·Á¤òÄɤ¤¤«¤±¤Ê¤¬¤éºÂ¶þ²òÀϤ·¤¿¤é·ë²Ì¤¬ÊѤï¤Ã¤Æ¤¯¤ë¤«¤É¤¦¤«
(¹©Æ£)(»³ºê)
- ͽÈ÷°Æ
- ¥¥Ã¥·¥å¤µ¤ó¤¬FEM¥â¥Ç¥ë²½¤·¤è¤¦¤È¤·¤Æ¤¤¤ë?³ÑÂÀ¶¶¤È¤«¡¢¹Ý¶¶ÀÑ»»¥é¥Ü¤Ë¤¢¤ë¤è¤¦¤Ê¿·¤·¤¤Ê£¹ç¹½Â¤¤Î͸ÂÍ×ÁÇ¥â¥Ç¥ë²½
- ±§Ã蹽¤¥Í¥¿:¥¨¥ó¥Ü¥¹ÉÕ¤±ßÅû¤ÎºÂ¶þ²òÀÏ¡£¿È¶á¤Ê»î¸³ÂΤȤ·¤Æ¡¢
¥¨¥ó¥Ü¥¹ÉÕ¤¶õ¤´Ì¤òÀÚ¤ê½Ð¤·¤ÆºàÎÁ»î¸³¤ò¤·¤¿¸å¤Ç¡¢°µ½Ì»î¸³¤ò¹Ô¤¤¡¢¤½¤ì¤òCalculiX¤Ç¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤·¤Æ¤É¤ì¤¯¤é¤¤¹ç¤¦¤«¤È¤«¡£
- ¹Ý¹½Â¤(¶ù³ÑÉô¤È¤«)¤«Ê£¹ç¹½Â¤(¶¶µÓ¤È¤«)¤Î¿ôÃͲòÀÏ(¸åÆ£)
- ¤½¤Î¾¤Î¥Í¥¿¤Ïʸ¸¥¸¡º÷¤Ç¸¡º÷
- ¹âÎϥܥë¥È°úÄ¥Àܹç¤Î¤Æ¤³È¿ÎÏ
- ÅìËÌ»ÙÉô¤Ë¤Ä¤¤¤Æ
CalculiX¥¼¥ß(±Ñ¸ì¥¼¥ß)
- Calculix¤Ç1¿Í1Î㤺¤Ä·×»»¤·¤Æ¼ê·×»»¤ÈÈæ³Ó(±Ñ¸ì¥¼¥ß?4Îã)
- CLOAD¤ÈDLOAD¤òÈæ³Ó¤·¡¢ÅùʬÉۺܲ٤ò¼«Æ°²½¤Ç¤¤ë¤«¤É¤¦¤«³Îǧ(¼Â¸³Ã´Åö¼Ô¤«¤»¤óÃÇÊäÀµ·¸¿ôôÅö¼Ô)
- °ÛÊýÀºàÎÁ(ÌÚºà)¤ÈÅùÊýÀºàÎÁ(¹Ý)¤ÎÍ×ÁǤòº®¤¼¤¿¤È¤¤Ë¡¢ÅùÊýÀ¤ÎÍ×ÁǤâ°ÛÊýÀÍ×ÁǤÇÍ¿¤¨¤Ê¤¤¤È²ò¤±¤Ê¤¤¤«¤É¤¦¤«³Îǧ(ELASTIC¼Â¸³Ã´Åö¼Ô¤«¤»¤óÃÇÊäÀµ·¸¿ôôÅö¼Ô)
- ²òÀÏÎã¤Î°ìÈÖ²¼¤Ë¼¨¤µ¤ì¤Æ¤¤¤ë¤è¤¦¤Ë¡¢²Ù½ÅÀ©¸æ¤ÈÊѰÌÀ©¸æ¤òÀÚÂØ¤¨¤Ê¤¬¤éºÂ¶þ¸å¤òÄɤ¨¤ë¤«¤É¤¦¤«³Îǧ¡£¤È¤¤¤¦¤«¡¢CalculiX¦¤¬¼«Æ°Åª¤Ë²Ù½ÅÀ©¸æ¤ÈÊѰÌÀ©¸æ¤òÀÚÂØ¤¨¤Æ¤¯¤ì¤ë¤Î¤«(ºÂ¶þôÅö¼Ô)
- ½é´üÉÔÀ°¤òÁýÂ礵¤»¤Ê¤¬¤é°ÂÄê¤Ê·ÐÏ©¤ÇºÂ¶þ¸å¤òÄÉÀפ¹¤ë¾ì¹ç¡¢Àþ·ÁºÂ¶þ²òÀϤθÇÍ¥Ù¥¯¥È¥ë¤È¤·¤ÆºÂ¶þ¥â¡¼¥É¤¬¼è¤ê½Ð¤»¤ë¤È¡¢¤½¤ì¤ò½é´üÉÔÀ°¤ËÍøÍѤǤ¤ë¤Î¤ÇÊØÍø¤Ê¤Î¤À¤¬¡¢Àþ·ÁºÂ¶þ²òÀÏ(¹©Æ£¤µ¤ó¤¬¤ä¤Ã¤¿)¤«¤éºÂ¶þ¥â¡¼¥É¤¬¼è¤ê½Ð¤»¤ë¤«¤É¤¦¤«³Îǧ
(BUCKLEºÂ¶þôÅö¼Ô)
- ²Ù½Å¡¢ÊѰÌÀ©¸æ¤òÀÚÂØ¤¨¤¿¤ê¡¢ÅÓÃæ¤«¤éÉÔÀ°¤òÆþ¤ì¤¿¤ê¤·¤¿¤¤¾ì¹ç¡¢°ì¤Ä¤Î·×»»¤¬½ªÎ»¤·¤¿»þÅÀ¤Î¤Ä¤ê¤¢¤¤¾õÂ֤Υǡ¼¥¿¤ò½ÐÎϤ·¤Æ¤ª¤¤¤Æ¡¢¼¡¤Î·×»»¤Î½é´ü¾õÂÖ¤ò¡¢Á°¤Î·×»»¤ÎºÇ½ª¾õÂ֤ΤȤ³¤í¤«¤é·×»»¤ò¹Ô¤¦¼êË¡¤¬É¬Íפˤʤ뤫¤âÃΤì¤Ê¤¤¤Î¤Ç(*)¡¢¤³¤ì¤¬¤Ç¤¤ë¤«¤É¤¦¤«³Îǧ(ºÂ¶þôÅö¼Ô)
- ¤½¤Î¾¤Î²ÝÂê
- cgx¤ò¥×¥ê¥×¥í¥»¥Ã¥µ¡¼¤È¤·¤Æ³ÑÂÀ¶¶¤ß¤¿¤¤¤Ê¤ä¤äÊ£»¨¤ÊÊ£¹ç¹½Â¤¤Î¥â¥Ç¥ë²½¤¬¤Ç¤¤½¤¦¤«¤É¤¦¤«¤ò³Îǧ(³ÑÂÀ¶¶Ã´Åö¼Ô)
- CalculiX¤Ç¤Ï¥ß¡¼¥¼¥¹±þÎÏ(ÁêÅö±þÎÏ)¤ÈÁêÅöÁºÀ¤Ò¤º¤ß´Ø·¸¤òÍ¿¤¨¤ÆÃÆÁºÀ¥â¥Ç¥ë¤ò¥â¥Ç¥ë²½¤¹¤ë¤¬¡¢
¥Þ¥Ë¥å¥¢¥ë¤Ç¸À¤¦¡ÖºÇ½é¤ÎÅÀ¡×¤Ë¡Ö¤»¤óÃǹßÉú±þÎϡפòÍ¿¤¨¤ì¤Ð¤¤¤¤¤È¤¤¤¦¤³¤È¤Ê¤Î¤«¤É¤¦¤«³Îǧ¡£
¿ôÃͲòÀÏ¥¼¥ß¤ÎÆüÄø³Îǧ(¹â¶¶ÈɤÈÄ´À°)¤ÈÌò³äʬô
ÆüÄø(ͽÄê)
5/25 | unix¥³¥Þ¥ó¥É¡¢vi(¸åÆ£ÈÉ) |
6/1 | vi(¸åÆ£ÈÉ) |
6/8 | Fortran(¸åÆ£ÈÉ) |
6/15 | ¡· |
6/22 | ¡· |
6/29 | c¸À¸ì(¿å¸¦) |
7/6 | ¡· |
7/13 | ¡· |
7/20 | ¡· |
7/27 | LaTeX(¸åÆ£ÈÉ) |
8/3 | ¡· |
¸åÆ£ÈÉôÅö
| ôÅö¼Ô |
vi | |
unix | |
Fortran | |
LaTeX | |
°Ê²¼¤Ï2006ǯÅÙ¤ÎÆâÍÆ
¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹
- ·å¶¶:ºÙë
- ¥È¥é¥¹:¹©Æ£
- ¤Ä¤ê¶¶:Âç¹õ
- ¤ä¤Þ¤ä¥¸¥å¡¼¥¹
- ¥¦¥§¥Ã¥È¥Æ¥£¥Ã¥·¥å
- Ç´ÅÚ
- ¥Ú¡¼¥Ñ¡¼¥¯¥é¥Õ¥È
- ¥Ö¥ê¥³¥ómpg
¤ªÃΤ餻
06/6/9¡Ê¸åÆ£)
vi¤¬¤Þ¤À»È¤¨¤Æ¤Ê¤¤¿Í¤â¤¤¤ë¤è¤¦¤Ê¤Î¤Ç¡¢
vi¤Î»È¤¤Êý
¤òÄɲ䷤Ƥª¤¤Þ¤·¤¿¡£
2006ǯÅÙ¤ÎͽÄê
Ï¢Íí»ö¹à(¸åÆ£)
- ´ÏÀÆü»ï¤Ë¡Ö¥¼¥ß¡×¤È¤«¡Ö±Ñ¸ìʸ¸¥¡×¤È½ñ¤¤¤Æ¤Ï¥À¥á(¤³¤ì¤é¤Ï´ÏÀ¤Îºî¶È»þ´Ö¤Ë¤ÏÆþ¤é¤Ê¤¤)¡£
- ¡ÖWiki¥Ä¡¼¥ë¤Î»È¤¤Êý¡×¤È¤«¤Ê¤é¤¤¤¤¤±¤É¡£
- Ω¹ç¼Ô¤Ï±¡À¸¤Ç¤â²Ä(µºÜɬ¿Ü»ö¹à»²¾È¡Ë
- 5/2¤Î¥¼¥ß¤ÏµÙ¤ß¡£µÙ¤ßÃæ¤Ë¾¯¤·¤Ç¤âCalculiX¤ÎÏÂÌõ¤ò¿Ê¤á¤Æ¤ª¤¯¤³¤È¡£
- ¼¡²ó¤Ï5/8(·î)14:00¤«¤é¡£
¿ôÃͲòÀÏ¥¼¥ß
5/24 | Unix; vi(¸åÆ£ÈÉ) |
5/31 | vi(¸åÆ£ÈÉ) |
6/7 | C |
6/14 | C |
6/21 | C |
6/28 | C |
7/5 | C |
7/12 | C |
7/19 | Fortran(¸åÆ£ÈÉ) |
7/26 | Fortran(¸åÆ£ÈÉ) |
8/2 | Fortran(¸åÆ£ÈÉ) |
´ÏÀ¥Æ¡¼¥Þ´õ˾(¤Þ¤À̤Äê¤À¤±¤É¡¢Á᤯¶¯¤¯¼çÄ¥¤·¤¿¿Í¤¬Í¥Àè?)
- ¾åÅÄ¡§¼Â¸³
- µÌ¡§»¬
- ºÙë¡§·Ê´Ñ
- ¹©Æ£¡§
- CalculiX¤ÎΩÂÎÍ×ÁǤÇÎ¤β£¤Í¤¸¤ìºÂ¶þ¤ò²ò¤¤¤Æ¤ß¤ë
- ¤½¤ì¤¬¤Ç¤¤ë¤Ê¤é¡¢¤Í¤¸¤ê¹äÀ¤¬¾®¤µ¤¤»þ¤ËVlasov¤ä¥Æ¥£¥â¥·¥§¥ó¥³¤Î²òÀϲò¤ÈÎÂÍ×ÁǤοôÃͲò¤¬¤º¤ì¤Æ¤¯¤ëÌäÂê
- ÌÚºà¤Î²£¤Í¤¸¤ìºÂ¶þ¤Î¼Â¸³ÃͤȺÙÄ¹Èæ¤È¤Î´Ø·¸¤¬²òÀÏÃͤȵդˤʤëÌäÂê
- Âç¹õ²°
- tyokum<mage.d¤ò5ÅÀºÜ²Ù»î¸³¤Ç¤ä¤Ã¤Æ¤ß¤ë¡£
- ½¸À®ºàΤκ¶þ(¥Õ¥©¡¼¥È¥é¥ó¤ÎÎÂÍ×ÁǤÈCalculix¤ÎΩÂÎÍ×ÁǤÇÈæ³Ó)
- ºÙÄ¹Èæ¤ÈºÂ¶þ²Ù½Å¤Î´Ø·¸¤¬¼Â¸³¤È¿ôÃͲò¤Ç°ìÃפ·¤Ê¤¤
- ¤»¤óÃÇÃÆÀ·¸¿ô¤¬¾®¤µ¤¯¤Ê¤Ã¤Æ¤¤¤¯¤È²òÀϲò¤È¿ôÃͲò¤¬°ìÃפ·¤Ê¤¤
- ¥Õ¥©¡¼¥È¥é¥ó¤ÎΩÂÎÍ×ÁÇ(¤ò¥¢¥¤¥½¥Ñ¥é¥á¥È¥ê¥Ã¥¯Âбþ¤Ë¤·¤Æ)¤Ç¤»¤óÃÇ¥í¥Ã¥¥ó¥°
- ¥Õ¥©¡¼¥È¥é¥ó¤ÎΩÂÎÍ×ÁÇ(¤Ë¹ßÉúȽÄê¤òÆþ¤ì¤Æ)¹ÝÈÄÁÞÆþΤÎÃÆÁºÀ²òÀÏ(¤ÇCalculiX¤ÈÈæ³Ó)
4/25¤ÎÏ¢Íí»ö¹à
- CalculiX¥Þ¥Ë¥å¥¢¥ë¤Î¼«Ê¬¤ÎôÅö²Õ½ê¤ò¡¢ÏÂÌõºî¶ÈWiki¤Ëޤê¤Ä¤±¤Æ¤ª¤¯¡£
4/18¤Î½ÉÂê(¤ò¤Á¤ç¤Ã¤È½¤Àµ)
ËèÆü¡¢abcdefghijklmnopqrstrvwxyzABCDEFGHIJKLMNOPQRSTRVWXYZ0123456789
¤ò10²óÂǤÁ¹þ¤à¡£Âçʸ»ú¤òÂǤĻþ¤Ï¡¢ABCDEFG¤Î¤è¤¦¤Ëº¸¼ê¤Çʸ»ú¥¡¼¤òÂǤľì¹ç¤Ï±¦¼ê¤Î¾®»Ø¤Ç
¥·¥Õ¥È¥¡¼¤ò²¡¤µ¤¨¡¢HIJKLMNOP¤Î¤è¤¦¤Ë±¦¼ê¤Çʸ»ú¥¡¼¤òÂǤľì¹ç¤Ïº¸¼ê¤Î¾®»Ø¤Ç¥·¥Õ¥È¥¡¼¤ò²¡¤µ¤¨¤ë¡£
±Ñ¸ì¥¼¥ß
º£Ç¯¤Ï¡¢°ì¿Í20¥Ú¡¼¥¸ÄøÅÙ¤¬Ìܰ¤ߤ¿¤¤¤Ê¤ó¤Ç¡¢
CalculiX¤Î¥Þ¥Ë¥å¥¢¥ë¤ò¥³¥Ô¡¼¤·¤Æ20¥Ú¡¼¥¸¤º¤Äʬô¤·¤Þ¤¹¤«¡£
CalculiX¤Î¥Þ¥Ë¥å¥¢¥ëÏÂÌõºî¶ÈÀìÍѤÎWiki¥Ú¡¼¥¸¤ò¥Ñ¥¹¥ï¡¼¥ÉÀ©¸Â¤Ä¤¤Ç¡¢
¤³¤³¤ËÍѰդ·¤Þ¤·¤¿¡£
¥Ñ¥¹¥ï¡¼¥É¤Ï¥á¡¼¥ë¤Ç¤ªÃΤ餻¤·¤Þ¤¹¡£
¿ôÃͲòÀÏ¥¼¥ß
¿å¸¦¤È¹çƱ¤Î¿ôÃͲòÀÏ¥¼¥ß¤Ï¡¢5/24¤«¤éËè½µ¿åÍËÆü¤Î12:50-14:20¤Ë¤Ê¤ëͽÄê¤Ç¤¹¡£
¸åÆ£ÈɤÎôÅö¤Ï¡¢ºÇ½é¤Î2²ó¤°¤é¤¤¤Ç¡¢UNIX¥³¥Þ¥ó¥É¡¢vi¤Î»È¤¤Êý¡¢
¹â¶¶ÈɤÎC¾¤Î¤¢¤È¤Ë¡¢¥Õ¥©¡¼¥È¥é¥ó3²ó¤°¤é¤¤¡¢TeX4²ó¤°¤é¤¤
°Ê²¼¤Ï2005ǯÅÙ¤ÎÆâÍÆ
²ÆµÙ¤ß¤Î½ÉÂê¤ÎÄó½Ð
- £Ä£Ö£Ä¤ËÁ´°÷ʬ¤Î¤òÆþ¤ì¤Æ¡¢¥Ý¥¹¥È¤ËÆþ¤ì¤Æ¤ª¤¤Þ¤·¤¿¡£
¤ªÃΤ餻
- 9/21(¿å)¥¥ã¥ó¥Ñ¥¹¥¯¥ê¡¼¥ó¥Ç¡¼
- ¤¤¤Ê¤¤¤È»×¤¦¤±¤É¡¢¥°¥é¥ó¥Þ¡¼¥È¤ËÃó¼Ö¤·¤ÆÂç³Ø¤ËÍè¤Ê¤¤¤è¤¦¤Ë
- 9/12¤Î½µ¤Ë»¬Ä´ºº¤Ë¹Ô¤±¤Ê¤¤¤«¤Ê
- 9/20¤«¤é¤ÎÏ¢µÙ¤Ï¸åÆ£¤ÏËßµÙ¤ß
¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹½àÈ÷
- ¥ª¡¼¥×¥ó¥¥ã¥ó¥Ñ¥¹¤Ï(10/8ÅÚ)
- ¥±¥ó¥È»æ¤Î·å¶¶¤ò¤Ä¤¯¤ë
- ¥¹¥Ñ¥²¥Ã¥Æ¥£¡¼¤Ä¤ê¶¶¤Î½¤Íý
- ¥¹¥Ñ¥²¥Ã¥Æ¥£¡¼¥È¥é¥¹¤â¤â¤¦°ì¶¶
- ÀÑÌÚ¥¢¡¼¥Á¤Î½¤Àµ
- ¥Ý¥¹¥¿¡¼À½ºî
- ¥×¥ì¥¼¥óÎý½¬
- ºòǯ¤ÎÁϤ¹©Ë¼¤ÎºÜ²Ù»î¸³DVD¤Împeg²½
²ÆµÙ¤ß¤Î½ÉÂê
- ¹½Â¤¼Â¸³
¤ò¹Ô¤¤¡¢LaTeX,Xfig,gnuplot¤Ç¥ì¥Ý¡¼¥È¤òºîÀ®¤¹¤ë¡£
- gnuplot¤ÇÀþ·Á²óµ¢¤·¤¿¾ì¹ç¤Ë¡¢Áê´Ø·¸¿ô¤¬½ÐÎϤµ¤ì¤Ê¤¤¤«¤âÃΤì¤Ê¤¤¤Î¤Ç¡¢
¤³¤³¤Î
kaiki.f
¤ò»È¤Ã¤ÆÁê´Ø·¸¿ô¤òµá¤á¤Æ¤ß¤Þ¤·¤ç¤¦¡£
- CalculiX¤ÎÌõ¤Ï¤Á¤ã¤ó¤È¿Ê¤á¤Æ¤ª¤¯¤³¤È¡£
´ÏÀ¥Æ¡¼¥Þ
- ¹ÓÌÚ¡¢¿ÊÆ£¡¢»°±º¤¬²òÀÏ·Ï
- »°±º¤Ï¼Â¸³·Ï
- ¹ÓÌڤϥե©¡¼¥È¥é¥ó
- ¿ÊÆ£¤ÏCalculiX
- Æ£¸¶¤¬»¬
- ¾®ÎÓ¤¬·Ê´Ñ
»²¹Í»ñÎÁ
²ÝÂê6/21
¤â¤·ºÂÀʤË;͵¤¬¤¢¤ì¤Ð¡¢13:30¤«¤éC319¤Ç(°Ø»Ò»ý»²¤Ç)µÜËÜÀèÀ¸¤ÎÆÃÊֵ̹Á¡£
²ÝÂê6/15
- LaTeX³¤¡£
- web3e.tex¤Îhyperref¤Ïpdf²½¤·¤Ê¤¤¤È¥ê¥ó¥¯¤¬Í¸ú¤Ë¤Ê¤é¤Ê¤¤¡£
- AdobeReader?¤Çpdf¤ò³«¤¤¿¤¤¾ì¹ç¤Ï¡¢¡Ö¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¡×¢ª¡Ö¥ª¥Õ¥£¥¹¡×¢ªAdobeReader?
²ÝÂê6/8
²ÝÂê6/1
²ÝÂê5/25
- xfig¤Çhoge.eps¤ò³«¤¡¢Ìð°õ¤ä¥×¥í¥Ã¥È¤ÎÀâÌÀ¤ò½ñ¤Æþ¤ì¤ë¡£
- gftp¤Ç·×»»¥µ¡¼¥Ð¡¼¤Ë¥Õ¥¡¥¤¥ë¤ò¥¢¥Ã¥×¥í¡¼¥É¤·¤¿¤ê¡¢¥µ¡¼¥Ð¡¼¤«¤é¥Õ¥¡¥¤¥ë¤ò¥À¥¦¥ó¥í¡¼¥É¤¹¤ë¡£
²ÝÂê5/18
- Àè½µ¤ÎÉü½¬¡£¥°¥é¥ÕÉÁ²è¤ËŬ¤·¤¿·Á¼°¤Ë½ÐÎϽñ¼°¤ò½¤Àµ¡£
- ÆÀ¤é¤ì¤¿y=f(x)¤Îx,y¥Ç¡¼¥¿¤ògnuplot¤ÇÉÁ²è¤·¡¢eps·Á¼°¤ÇÊݸ¡£
- $ ggv hoge.eps ¤ÇºîÀ®¤µ¤ì¤¿²èÁü¥Õ¥¡¥¤¥ë¤ò³Îǧ¡£
- xfig¤Çhoge.eps¤ò³«¤¡¢Ìð°õ¤ä¥×¥í¥Ã¥È¤ÎÀâÌÀ¤ò½ñ¤Æþ¤ì¤ë¡£
²ÝÂê5/11
- g77¤Ç¹¥¤¤Ê´Ø¿ôy=f(x)¤ò·×»»¤¹¤ë¥×¥í¥°¥é¥à¤òºîÀ®¤·¡¢¼Â¹Ô¡£
- ¤Þ¤º¤Ï¡¢x¤ò¥¡¼¥Ü¡¼¥ÉÆþÎϤ·¤Æy¤ò²èÌ̽ÐÎϤ¹¤ë¥×¥í¥°¥é¥à
(rei1.f¤ò
¥À¥¦¥ó¥í¡¼¥É¤·¤Ævi¤ÇÊÔ½¸)
- ¼¡¤Ë¡¢x¤ò¦¤x¤º¤ÄÊѲ½¤µ¤»¤¿¤È¤¤Îx,y¤ò¥Ç¡¼¥¿½ÐÎϤ¹¤ë¥×¥í¥°¥é¥à
(rei2.f¤ò
¥À¥¦¥ó¥í¡¼¥É¤·¤Ævi¤ÇÊÔ½¸)
²ÝÂê4/27
- ¤Þ¤º¤Ï¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤Î´ðËÜ¡£¥Û¡¼¥à¥Ý¥¸¥·¥ç¥ó¤Î³Îǧ¡£
¥Ñ¥½¥³¥ó¤Ç¤½¤ÎÆü¤Îºî¶È¤ò»Ï¤á¤ëÁ°¤Ë
abcdefghijklmnopqrstrvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
01234567890¤ò3²óÂǤÁ¹þ¤à¡£SHFT¥¡¼¤Ï¡¢Ê¸»ú¤òÂǤäƤ륡¼¤È¤ÏÈ¿ÂФμê¤Î¾®»Ø¤Ç¡£
- ¥Û¡¼¥à¥Ý¥¸¥·¥ç¥ó¤ò³Ð¤¨¤¿¤È¤³¤í¤Çvi¤Î´ðËÜÁàºî¡£
vi¤Î(ºî¶È¸úΨ¤ËÆÃ²½¤·¤¿)Áàºî¤Ï¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤¬¤Ç¤¤Æ¤ë¤³¤È¤¬Á°Äó¤Ê¤Î¤Ç¡¢¥Ö¥é¥¤¥ó¥É¥¿¥Ã¥Á¤¬¤Ç¤¤Æ¤Ê¤¤¤È
¤Ò¤¿¤¹¤éÉÔÊØ¤Ç»È¤¤¤Ë¤¯¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦¡£
- ¥Õ¥¡¥¤¥ë¤ò³«¤¡¢Ê¸»úÎó¤òÁÞÆþ¤·¤ÆÊݸ½ªÎ»¤Ç¤¤ë¡£
- hjkl¤Î¥¡¼¤ò»È¤¤¤Ê¤¬¤é¼ê¤ò¥Û¡¼¥à¥Ý¥¸¥·¥ç¥ó¤ËÃÖ¤¤¤¿¤Þ¤Þ¤Ç¥«¡¼¥½¥ë¤òº¸±¦¾å²¼¤Ë°Üư¤Ç¤¤ë¡£
- ʸ»ú¤Îºï½ü¡¢ÃÖ´¹¡¢¹Ô¤Îºï½ü¡¢ÁÞÆþ¡¢Åù¡¹
- »ñÎÁ
²ÝÂê4/20
- FD¤Ç¥Ç¥£¥ì¥¯¥È¥ê¡¼¤ò»ØÄꤷ¤Æ¡¢¥Õ¥¡¥¤¥ë¤Î¥³¥Ô¡¼¤ä°Üư¤¬¤Ç¤¤ë¡£
- MO¥É¥é¥¤¥Ö¡¢DVD¥É¥é¥¤¥Ö¡¢¥Õ¥é¥Ã¥·¥å¥á¥â¥ê¤Ê¤É¤òÀܳ¤·¡¢FD¤Ç¥Õ¥¡¥¤¥ë¤ò¥³¥Ô¡¼¤·¤¿¸å¤Ë
¥Þ¥¦¥ó¥È²ò½ü¤·¤Æ¼è¤ê³°¤¹¡£
- ·×»»¥µ¡¼¥Ð¡¼¤ËÀܳ¤·¡¢cgx -b dummy.fbd¤Çcgx¤òµ¯Æ°¤·¡¢CalculiX¤Î¥Þ¥Ë¥å¥¢¥ë¤ò³«¤¡¢
- ccx¤ÎÊý¤ò3¿Í¤°¤é¤¤
- cgx¤ÎÊý¤ò2¿Í¤°¤é¤¤¤Çʬô²Õ½ê¤ò·è¤á¤ë
- ʬÎ̤ξ¯¤Ê¤¤1¿Í¤ÏCalculiX¤âÌõ¤¹
²ÝÂê4/13
- ¥³¥Þ¥ó¥É¥é¥¤¥ó¤Ç¥Ç¥£¥ì¥¯¥È¥ê¡¼¤Î²¼¤Î³¬Áؤä¾å¤Î³¬ÁØ¤Ë°ÜÆ°¤Ç¤¤ë
- ¥Ç¥£¥ì¥¯¥È¥ê¡¼¤ÎºîÀ®¤Èºï½ü¤¬¤Ç¤¤ë
- ¥Õ¥¡¥¤¥ë¤Î¥³¥Ô¡¼¡¢°Üư¡¢ºï½ü¤¬¤Ç¤¤ë
- vi¤òµ¯Æ°¤·¤Æ¥Æ¥¥¹¥È¥Õ¥¡¥¤¥ë¤ÎÃæ¿È¤ò¸«¤Æ½ªÎ»¤Ç¤¤ë
- (ÄɲÃ)²¼µ¤ÎÊýË¡¤Ç¥Æ¥¥¹¥È¥Õ¥¡¥¤¥ë¤òEUC¥³¡¼¥É¤ÇÊݸ¤·Ä¾¤·¡¢more¤ÇÃæ¿È¤ò¸«¤ì¤ë¤³¤È¤ò³Îǧ
ÊäÂ4/13
¥Æ¥¥¹¥È¥¨¥Ç¥£¥¿¡¼(gedit)¤Ç¡ÖÊݸ¡×¤òÁª¤Ö¤È¡¢Êݸ¥Ç¥£¥ì¥¯¥È¥ê¤È¥Õ¥¡¥¤¥ë̾¤ò·è¤á¤ë
²èÌ̤¬½Ð¤Æ¤¤Þ¤¹¤¬¡¢¤½¤³¤Ë¡Öʸ»ú¥³¡¼¥É¡×¤òÁªÂò¤¹¤ë¤È¤³¤í¤¬¤¢¤ë¤È»×¤¤¤Þ¤¹¡£
¥Ç¥Õ¥©¡¼¥ë¥È(²¿¤â¤·¤Ê¤¤¾õÂÖ)¤Ç¤Ï¡¢¤½¤³¤¬Unicode(UTF-8)¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤È»×¤¤¤Þ¤¹¤¬¡¢
¤³¤Î¤Þ¤ÞÊݸ¤¹¤ë¤È¡¢¥³¥Þ¥ó¥É¥é¥¤¥ó¤Çmore¤Ç¸«¤è¤¦¤·¤Æ¤âʸ»ú²½¤±¤·¤Æ¸«¤ì¤Þ¤»¤ó¡£
EUC-jp¤òÁªÂò¤·¤ÆÊݸ¤·¤Æ²¼¤µ¤¤¡£¤½¤¦¤¹¤ì¤Ð¡¢¥³¥Þ¥ó¥É¥é¥¤¥ó¤Çmore ¥Õ¥¡¥¤¥ë̾¤Ç
Ãæ¿È¤¬¸«¤ì¤ë¤È»×¤¤¤Þ¤¹¡£
»²¹Í4/13
º£¸å¤ÎͽÄê¤Ê¤É
- TeX¤Ç´Êñ¤Êʸ¾Ï¤ò½ñ¤¤¤Æ¤ß¤ë¡£web1e.tex-web4e.tex
- y=f(x)¤Îx,y¥Ç¡¼¥¿¤ògnuplot¤ÇÉÁ²è¤·¡¢¤½¤ì¤òxfig¤Ë¼è¤ê¹þ¤ó¤ÇÀâÌÀ¤ò½ñ¤²Ã¤¨¤¿¸å¡¢
eepic½ÐÎϤ·¡¢TeX¤Ë¼è¤ê¹þ¤à¡£¤Ç¡¢ÈùÄ´À°¡£