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Abstract

Veras Maia, F. Nonlinear Quasi-Static Finite Element Modeling of Reinforced Concrete Beams with the

Open Source Software Programs code aster and salome meca. techreport, University of Saskatchewan, Saska-

toon, SK, Canada, Aug. 2019. doi: 10.5281/zenodo.2529729.

This report investigates the usefulness of the open-source software programs salome meca and code aster

in nonlinear quasi-static finite element modeling of reinforced concrete beams. To begin with, the litera-

ture review includes the history, principles and advantages of the open-source software, its principles and

advantages, the theory of finite element modeling and an introduction to salome meca and code aster. Ex-

perimental data from the literature were used for modeling and validation. All steps were explained: from

geometrical modeling, through meshing, and generation of the command file. A one-dimensional beam with

a multi-fiber section of concrete and reinforcement steel was used for modeling in this report. Mazars damage

model was assigned for concrete fiber, and the reinforcement steel fiber followed a von Mises behaviour. Total

solutions and calculations were performed in 8.49 seconds in real time (wall clock) resulting in an ultimate

load of 334.7 kN and mid-span deflection of 10.1 millimeters. In comparison with the experimental data, the

numerical ultimate load was 1.1% greater than the experimental value, and the numerical mid-span deflection

was 6.3% greater than the one from the experiment. The curve load versus displacement also had a good fit

to the experimental data, with a calculated R squared of 0.999. Therefore, both software programs may be

adopted by engineers, granted that the necessary time is invested for a deep understanding of the models,

constraints, limitations, and configuration options for each stage.
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”Finite element analysis is an art to predict the future.” (Klaus-Jürgen Bathe)
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Chapter 1

Introduction

1.1 Objectives

This study sets out to investigate and report the usefulness of the open source software programs code aster

and salome meca in implementing nonlinear quasi-static finite element modeling of reinforced concrete beams.

Therefore, specific objectives come forth as branches:

• Review of the open source software programs code aster and salome meca; and

• Validation, with available experimental data, of the results from the finite element modeling of reinforced

concrete beams with the open source programs code aster and salome meca.

1.2 Document Structure

The report structure follows the Academic Policies and Guidelines of the Handbook for Graduate Students

[20] published by the Department of Civil Geological and Environmental Engineering of the University of

Saskatchewan. The following chapters are:

• Chapter 2, Literature Review, presents the conceptual framework with an exploratory review of the

topics: finite element method; open source software and the programs code aster and salome meca;

mazars damage model for concrete; and experimental data of classic concrete beam tests;

• Chapter 3, Methodology, presents the methods for implementing and evaluating finite element proce-

dures using the software programs code aster and salome meca;

• Chapter 4, Results and Analysis, presents the results, analysis and pertinent discussions;

• Chapter 5, Summary, Conclusions, and Recommendations, presents the summary of the project, con-

clusions, and recommendations for future work.

1



Chapter 2

Literature Review

Mechanics is the science that studies the effect of forces and energy in bodies [11, 27], and it can be

divided in the following four branches [27], also shown in the top level of Figure 2.1.

• Theoretical mechanics, which applies fundamental laws and principles considering their intrinsic value,

regardless of application;

• Applied mechanics, which is a bridge between the theoretical knowledge and the scientific or engineering

applications, focusing on the mathematically modeling of physical phenomena;

• Computational mechanics, which uses numerical methods to translate mathematical models into in-

structions understood by a digital machine as sequences of operations; and

• Experimental mechanics, which collects data for the mathematical models and verifies the predictions

generated by the theoretical, the applied, and the computational mechanics.

Figure 2.1: Project scope in branches and subbranches of Mechanics (adapted from: [27])

Computational mechanics can be subdivided into branches that consider the physical scale of the focus

of attention, shown in the second level of Figure 2.1 and defined as [27]:

• Nanomechanics, which deals with phenomena at the molecular and atomic levels, e.g. in particle

physics, chemistry, and quantum mechanics;

• Micromechanics, which studies crystallographic and granular levels of matter;
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• Continuum mechanics, which studies bodies in a macroscopic level using continuum mechanics via

homogenization by phenomenologically averaging of the microstructure. Traditionally, the areas studied

by continuum mechanics are Solids and Structures, Fluids, or a mixture of Solids and Fluids named

Multiphysics; and

• Systems, which studies complex aggregation of distinct bodies that perform a specific function, e.g.

bridges, airplanes, building systems, etc.

Solids and Structures, i.e. the aggregation of solid elements, could be studied under two categories: Statics

and Dynamics.

In Statics, inertia forces are ignored, and the effect of time can be either completely ignored or estimated

[27]. On the other hand, in Dynamics, inertia forces and time are explicitly considered because the calculation

of inertial and damping forces requires derivatives with respect to the time to be taken [27].

Linear statics deals with problems which have linear stress-strain material response and infinitesimal

deformation; therefore, they follow linear equations [15, 27]. In contrast, nonlinear statics considers material

and geometrical nonlinearity [15]. The former has a nonlinear stress-strain response, whereas the latter are

also subjected to large strains, called finite deformation [15].

2.1 Finite Element Method

The Finite Element Method (FEM) is a numerical technique for solving systems of partial differential equa-

tions [15]. Although the theory of FEM cannot be traced to one single individual, the implementation and

dissemination into everyday use started with M. J. (Jon) Turner at the Boeing Company between 1950 and

1962 [27].

Turner generalized and optimized the Direct Stiffness Method, where the structure was broken down to

its minimum elements, processed, solved and post-processed. In addition, Turner supervised the development

of the first continuum-based finite elements [27].

”Stiffness and Deflection Analysis of Complex Structures”, a paper published by Turner et al. in 1956 is

considered as the beginning of the current FEM [72].

The first textbook in the subject was written by Olek Zienkiewicz, originally an expert in finite difference

methods. Currently, it has been published in three volumes [82, 83, 84].

Mentions should also be made to B. M. Irons for inventing isoparametric models, shape functions, the

patch test and frontal solvers; to R. J. Melosh, for recognizing the Rayleigh-Ritz link and systematizing the

variational derivation of stiffness elements; and to E. L. Wilson, who developed the first open source FEM

software [27].

Figure 2.2 shows the canonical structure of a physical simulation. The physical system is the source

of the simulation process. The system is idealized and discretized for obtaining a discrete model, which is

subsequently solved, verified and validated. The verification considers of the estimation of errors in the model
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itself, whereas validation is a comparison between model solutions and real data. Simulation error from the

validation is a combination of the solution error and the error resulted from the way the model is built, called

model error.

An ideal mathematical model is rarely necessary, since the simulation can, in most cases, satisfactorily

represent the physical system.

Figure 2.2: Physical FEM (source: [27])

Figure 2.3 shows the model updating strategy of the finite element analysis. An experimental database

has relevant parameters from the physical system that will be used for validating results from the discrete

model. The process of updating the current model (or choosing a completely new one) finishes when the

error is deemed acceptable.

Figure 2.3: Model updating in physical FEM (source: [27])

In an idealized quasi-static structural system, displacements, rotations, and strains are small, and materi-

als behaviour and contact forces are linear. Therefore, the system can be linearly modeled [8]. However, some

materials do not have a linear response. This influences the type of analysis, formulations, and measurements,

as described in Table 2.1. Other nonlinearities are classified in Table 2.2.
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Table 2.1: Overview of material characteristics

Material Characteristics Examples

Elastic, linear or

nonlinear

Stress is a function of strain only; same

stress path on unloading as on loading.

tσij =tCijrs
ters

linear elastic:

tCijrs is constant

nonlinear elastic:

tCijrs varies as a function of strain

Almost all materials

provided the stresses

are small enough:

steels, cast iron,

glass, rock, wood,

etc.; before

yielding or fracture

Hyperelastic Stress is calculated from a strain energy

functional W,

t
0Sij =

∂W

∂δεij

Ruberlike materials

Hypoelastic Stress increments are calculated from strains

increments

dσij = Cijrs ders

The material moduli Cijrs are defined as

functions of stress, strain, fracture criteria,

loading and unloading parameters,

maximum strain reached, and so on

Concrete models

Elastoplastic Linear elastic behavior until yield, use of

yield condition, flow rule, and hardening

rule to calculate stress and plastic strain

increments; plastic strain increments are

instantaneous

Metals, soils, rocks,

when subjected to

high stresses

Creep Time effect of increasing strains under

constant load, or decreasing stress under

constant deformation; creep strain

increments are noninstantaneous

Metal at high

temperatures

Viscoplasticity Time-dependent inelastic strain; rate

effects are included

Polymers, metals

Source: [8]
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Table 2.2: Classification of nonlinear analysis

Type of
analysis

Description of
classification

Typical formulation
used

Stress and strain
measures

Materially-

nonlinear-only

Infinitesimal displace-

ments and strains; the

stress-strain relation is nonlinear

Materially-nonlinear

-only (MNO)

Engineering stress

and strain

Large displace-

ments; large

roations, but

small strains

Displacements and

rotations of fibers are

large, but fiber

extensions and angle

changes between fibers

are small; the

stress-strain relation may

be linear or nonlinear

Total Lagrangian (TL)

Updated Lagrangian (UL)

Second Piola-Kirchhoff

stress, Green-Lagrange

strain

Cauchy stress, Almansi

strain

Large displace-

ments, large

rotations, and

large strains

Fiber extensions and angle

changes between fibers

are large, fiber

displacements and

rotations may also be

large; the stress-strain

relation may be linear or

nonlinear

Total Lagrangian (TL)

Updated Lagrangian (UL)

Second Piola-Kirchhoff

stress, Green-Lagrange

strain

Cauchy stress, Almansi

strain

Source: [8]
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2.2 Open Source Software

”Open Source” is a term coined in the spring of 1997 in California by a group of leaders in the free software

community as an attempt to spread the use of free software among the industry [22]. ”Source”, in the field

of software, is defined as ”the form in which a computer program is written” [56] and ”Open” attempts to

approximate the ideal of free as in freedom instead of gratis [42, 65, 81] that drives open collaboration and

results in innovation [43].

Although collaborative software writing and sharing started earlier - e.g. Donald Knuth’s free publishing-

quality TeX typesetting system1 in 1979 [30] - the idea of free software started in September of 1983 with the

conception of the GNU Project by Richard M. Stallman [64]. The GNU Project goal was to ”write a complete

Unix-compatible software system called GNU (for Gnu’s Not Unix), and give it away free to everyone who

can use it” [63, 64, 65].

Stallman defines a program as free software if [65]:

• You have the freedom to run the program, for any purpose;

• You have the freedom to modify the program to suit your needs. (To make this freedom effective in

practice, you must have access to the source code, since making changes in a program without having

the source code is exceedingly difficult;)

• You have the freedom to redistribute copies, either gratis or for a fee; and

• You have the freedom to distribute modified versions of the program, so that the community can benefit

from your improvements.

The intrinsic requirement to the source code was the genesis of the General Public License (GPL) [78], the

most widely recognized free software license in the world today [28]. The license ensures two main restrictions

[21, 28, 32, 58, 61, 78]: first, that any derivative work must also be distributed under the GPL; and second,

that no additional restrictions should be included neither in the original work nor in the derivative work,

written verbatim as ”you may not impose any further restrictions on the exercise of the rights granted or

affirmed under this License” [66], more restrictive than the open source definition [61].

The internationally recognized [51] open source definition [50] established by the Open Source Initiative

has ten criteria for any software license to be labeled as ”Open Source Software”. The criteria are enumerated

and individually paraphrased as follows.

1. Free Redistribution: any party is able to sell or give away the licensed software as a component of an

aggregate software distribution. No royalties or other fees are strictly required;

1The current report is written in the TeX, and the source code is available at https://github.com/franksmaia/M.Eng.
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2. Source Code: the source code must be provided along with the program unless other available means

of obtaining such code are extensively publicized. Reasonable fees to obtain the code can be charged,

although free access to download over the internet is preferable. Obfuscation of code or output of a

pre-processor or translator [45] is not allowed;

3. Derived Works: any work can be derived from an Open Source Software, and the license should allow

the derived work to be distributed in the same terms of the original software;

4. Integrity of The Author’s Source Code: licensed software may require that derived works carry a

different name or version number from the original software;

5. No Discrimination Against Persons or Groups: discrimination against any person or group of persons

is not allowed;

6. No Discrimination Against Fields of Endeavor: restrictions against software use in any specific field of

knowledge or venture is not allowed;

7. Distribution of License: license rights should extend to any subsequent redistribution of the program

without the need of additional licenses;

8. License Must Not Be Specific to a Product: programs that are components of a software distribution

[31] hold its licenses independently. The holding rights extend to any party that uses the components;

9. License Must Not Restrict Other Software: the license should not restrict any other software of having

another license; and

10. License Must Be Technology-Neutral: the license should not be technological bound or restricted to a

specific style of interface.

There are several additional benefits from the adoption of open source software Among those, security

ranks the top. Two opposite views on software development are the ”Security by Obscurity” [1] versus the

security of ”Many Eyeballs” [71]. The former is adopted by closed source software companies, whereas the

later is advocated by open source adepts.

Open source software developers adopt one of the two main strategies for production [58]: either develop

closed code and release it to the public after specific milestones, also known as ”Cathedral” model; or

transparently develop in a rolling scheme, known as ”Bazaar”. The later strategy attracts new developers,

stimulates the reporting of bugs, and engages the community of users [28].

”Security by Obscurity” relies on the fact that users do not have access to the source code; thus, are not

theoretically able to detect loopholes and mishaps of the programs [1]. The Security of “Many Eyeballs”, on

the other hand, regards access to the source code as positive: with a larger number of people employing their

expertise to examine the code, fewer bugs and malicious code are expected in the software [71].
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Security of ”Many Eyeballs” was also coined as the Linus’s Law [58]: ”given enough eyeballs, all bugs are

shallow”. In a more technical definition, the Linus’s Law states that ”given a large enough beta-tester and

co-developer base, almost every problem will be characterized quickly and the fix obvious to someone” [36].

This concept is one of the underlying reasons leading to the GNU/Linux success [58].

2.2.1 GNU/Linux

The GNU/Linux operating system is a successful example of open source software. All 500 most powerful

supercomputers systems run on GNU/Linux [70], and a W3Tech usage statistics and market share research

[76] shows that 68.9% of websites run on a GNU/Linux or a Unix compliant system. The Android mobile

operational, which uses a Linux kernel, powered 76% of the estimated total number of smartphones worldwide

in 2015 [67].

Technically, Linux is a kernel - an abstraction layer closer to the hardware [40], as shown in Figure 2.4. Its

development started in 1991 by Linus Torvalds in collaboration with several programmers around the world

[28]. Figure 2.5 shows the timeline of the Linux kernel development among other kernels. US Trademark

number 1916230 reserves the brand Linux for ”computer operating system software to facilitate computer

use and operation.” [73].

Linux filled a gap provided by the kernel design chosen by GNU project, which turned out to be harder

to implement than imagined [40]. Distributed with GNU Applications and a command line interface known

as ”Shells” (Figure 2.4), GNU/Linux was the first operational system that could be used completely free of

any proprietary software [21, 28, 58].

Figure 2.4: High-level view of the GNU/Linux operating system (adapted from: [40])

Initially only a few, hundreds of GNU/Linux distributions are available nowadays [44]. Users can choose

from a variety of distribution category, country of origin, desktop interface, architecture, package manage-

ment, release model, install media size, install method, multi-language support, init software, and status

9



Figure 2.5: GNU/Linux development in the Unix timeline (source: [37])
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[24].

Ranking among the top ten Linux distributions [25], Arch Linux was devised in 2002 by the Canadian

computer science graduate Judd Vinet [75]. It is widely recognized for its software management infrastructure,

customization and tweaking options, and extensive online documentation [25]. In addition to the official

software packages provided, the Arch User Repository [3] contains more than 50 thousand packages [2]

compiled by users with the script to automate the building of packages ”makepkg” [6], generating package

descriptions named ”PKGBUILD” [4] which are available for installation with the package manager ”pacman”

[5].

Linus Torvalds’s contributions to the open source community went further than the Linux kernel. Software

developers interact through several channels during the life-cycle of an open source software [21, 23, 78]: web

sites, mailing lists, message forums, version control systems, bug trackers, real-time chat systems, wikis,

Q&A forums and other social networks services [28]. Facing the challenge of managing codes from several

developers, he started the open source version control system Git [16].

2.2.2 Git and Github

A version control system is a mix of technologies and practices for tracking and controlling changes to files

in a project, e.g. source code, documentation, and web pages [28]. Efficiently tracking a large project as

the Linux kernel paved the way for the Git project’s goals [16]: speed, simple design, strong support for

non-linear development, and fully distributed. Common vocabulary adopted in Git should be clearly defined

for a better understanding of the system. The following definitions derive from the official Git reference book

[16].

commit

Commit is the action of registering previous file changes in a single permanent snapshot into the database.

Each commit - i.e. each snapshot of the directory structure and content of files - also contains the author’s

name, email address, pointers to the commit or commits that came directly before, and a message defined

by the user. The commit message contains a synthesis of the work done between the last snapshot and the

current one.

branch

A branch is a division of a project where developers can implement new features and solve bugs in isolated

lines of development from each other. Figure 2.6, for example, shows two different branches (”master” and

”iss53”) of a single project. The common ancestor is the snapshot (or commit) ”C2”, where the branch

”iss53” was started. When development ends in the branch ”iss53” on commit ”C5”, it could be merged

back into the main branch, now at commit ”C4”. Conflict might arise if the same code is changed by two

different people. In this case, the version control system detects and notifies at least one user to intervene.
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Figure 2.6: Three snapshots used in a typical merge (source: [16])

repository

A repository is a database where the information about a project is stored. A developer can either create

a local database or clone it from an existing repository available, for example, at GitHub 2. GitHub has

more than 31 million registered users across the globe, and over 100 million repositories on the platform

[33]. A study of information geographies conducted by the Oxford Internet Institute [35] in 2015 shows the

worldwide adoption of the GitHub platform (Figure 2.7), even though there are still large differences in the

rate at which people from different countries contribute [35].

checkout

Checking out is the process of switching branches and obtaining the content into the working directory.

2.2.3 Programming Languages

A programming language is a system for writing instructions to be evaluated by a machine as sequences of

operations [54]. The Government of Canada’s terminology and linguistic data bank defines code as ”a set

of rules and conventions according to which the signals representing data should be formed, transmitted,

received and processed” [55].

One basic classification of programming languages regards their level of abstraction from the computer

architecture: whether a developer code using instructions and data objects at the machine level or through

layers of abstraction [38]. In low-level programming languages, the developer deals with the details of opcodes,

mnemonics, registers and so forth available on the programming cards issued by the chip manufacturers [13].

High-level programming languages; however, provide the flexibility of specifying the detailed computation

2https://github.com/
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Figure 2.7: Number of GitHub users and commits by these users relative to the number of internet
users in 2015 (source: [35])

in a concise, clear and reliable expression [38], quicker and portable [12]. A more flexible level classification

considers that ”a programming language is low level when its programs require attention to the irrelevant”

[53].

Invented by the German engineer Konrad Zuse in 1945, Plankalkül (”Plan Calculus”) was the first high-

level programming language [59, 60]; nevertheless, the language did not have practical use due mainly to the

lack of orientation to numerical computations and the unorthodox elements of Plankalkül in two-dimensional

notation [9].

One of the first programming languages with practical use was FORTRAN, developed in the 1950’s by

an IBM team led by John Backus [12] with the purpose of being a vehicle for expressing scientific and

mathematical computation, while allowing for code efficiency [79]. Most programs in Finite Element Method

were developed in FORTRAN [27]. Since mid 1990’s, FORTRAN has been gradually substituted by C/C++

as a low-level language; and by Python, Matlab, Mathematica as higher-level languages [27].

C was developed in the early 1970’s by Dennis Ritchie of Bell Laboratories for implementing the UNIX

operating system [12] with many important ideas derived from the language BCPL, developed by Martin

Richards [41]. The language became an American National Standards Institute (ANSI) standard in 1989

[12], extensively based on the first edition of the book ”C Programming Language” [41] written by Brian

W. Kernighan and Dennis Ritchie. C is widely used as a low-level programming language in Finite Element

Method programs [27]. Currently, the C programming language is an ISO 9899:2018 standard [39].

C++ is an extension of C developed in the 1980’s by Bjarne Stroustrup, also from Bell Laboratories,

including support for object-oriented programming [12]. The Annotated C++ Reference Manual by Ellis

and Stroustrup [26] was the basis for the first standard by the International Organization for Standardization
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(ISO), now in its 2018’s version [39].

Python is a general-purpose high-level programming language that can be used to write any kind of

program that do not demand direct access to the computer’s hardware [38]. It was first released in 1991 by

Dutch programmer Guido van Rossum [52] and modernly implemented in 2000 with the Python Enhancement

Proposal (PEP) Purpose and Guidelines [77]. Python is the third most used language across all regions

in private, public, and open source repositories [34]. Scientific Computing Tools for Python provides the

SciPy ecosystem with ”general and specialized tools for data management and computation, productive

experimentation and high-performance computing” [62], among them:

• NumPy: ”fundamental package for scientific computing with Python” [49];

• Matplotlib: ”a Python 2D plotting library which produces publication quality figures in a variety of

hard copy formats and interactive environments across platforms” [69];

• SymPy: ”for symbolic mathematics and computer algebra” [68]; and

• pandas: ”providing high-performance, easy to use data structures” [57].

Another common factor of the aforementioned projects is the Numerical Foundation for Open Code and

Usable Science (NumFOCUS) as source of financial sponsorship [48]. NumFOCUS mission is ”to promote

sustainable high-level programming languages, open code development, and reproducible scientific research

(...) through educational programs and events as well as through fiscal sponsorship of open source scientific

computing projects” [47].

2.3 code aster and salome meca

code aster is a stand-alone thermo-mechanical open source solver developed and published by Électricité de

France (EDF), the French electric utility company [17]. The name ASTER stands for ”Analyses des Structures

et Thermomécanique pour des Études et des Recherches”, the French version of ”Structural Analysis and

Thermomechanics for Studies and Research” [80].

Several motivations impelled EDF for coding its own finite element package [7]:

• To provide a unique code for mechanics: the need for numerical tools was scattering the EDF Research

& Development teams. Instead of using a single general software, every team adopted its own package;

• The high cost associated with procurement, release and maintenance of commercial packages;

• The heavy quality control requirements regarding nuclear safety requirements at EDF plants which

demanded a solid platform for aggregation the accumulated experiences throughout different generations

of engineers; and
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• The consideration of loading history, manufacturing process, and possible repairs on the life span anal-

ysis of electricity power plants demanded more calculation hypothesis than the ones used for classical

engineering. Nonlinear approaches, thermal effects, dynamic loading stresses, and fluid structure inter-

actions had to be taken into account.

The first version was internally published in 1989 and the code was further licensed under the GNU GPL

in October 2001 [80]. EDF uses the software today for modeling the behavior or pathology of its equipment

on [7]:

• All components of the nuclear steam supply: pressure vessel, steam generators, primary motor-pump,

primary and secondary circuits;

• The production equipment: turbo generator set and turbine components, towers and overhead power

lines, both wind and hydro turbines; and

• The civil engineering applications: pre-stressed concrete containment building, cooling towers, hydro-

electric dams, nuclear waste storage sites.

Nowadays, more than 3500 verification test cases covering all features are available, which provide an

easier starting points for beginners [17].

Isolated, code aster is a solver configured by a command file (.comm). As shown in Figure 2.8, code aster

takes the pre-processing data (e.g. CAD, meshes) combined with the data settings of the mechanical

problem (e.g. constitutive models, behaviours, material parameters), creates a finite element model and

solves it. The results are usually displacement fields, which can be post-processed into other fields of

interest (e.g. stress, strain).

Figure 2.8: General principles of code aster] (source: [18])

SALOME is another open source software that provides a generic platform for pre- and post-processing

for numerical simulation [7]. Figure 2.9 shows the scope of SALOME with a blue background.

The software is based on an open and flexible architecture made of reusable components, and provides a

Graphical User Interface (GUI) for the user [7].
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Figure 2.9: SALOME: generic framework for pre and post-processing] (source: [18])

salome meca is an integrated and complete GUI that allows a complete study to be performed in a

single user interface. One of the modules, AsterStudy, can automate syntax checking; thus, it facilitates the

building of the command file [7].

Figure 2.10 shows a cropped screenshot of salome meca, once started. The modules can be started either

by the drop-down menu or by clicking on the items identified in the photo.

Figure 2.10: Screenshot of salome meca (source: [18])

The overall steps for a finite element analysis follow the standard of common packages:

• Define geometries of the bodies under study using the CAD module;

• Define the meshes including type of elements and refinements using the Mesh module;

• Set all data related to the problem (i.e. model and material definitions, boundary conditions and loads,

analysis, etc.) using the AsterStudy module;

• Launch the computation and survey using the AsterStudy module; and
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• Visualize the results using the ParaViS module,

Figure 2.11 shows the graphical user interface of the AsterStudy module. The main features of the module

are identified. In the ”Data Settings” management tab, a case was defined with two stages: st1 thermal analysis

and st2 mechanical analysis. The separation of stages are used to divide the analysis types, with the output

of the thermal analysis being used in the mechanical one.

Each stage has its own commands separated in categories, which are organized in the sorted order of use

on a series of drop-down menus indicated in Figure 2.11 as ”Main commands”.

Figure 2.11: Graphical user interface of the AsterStudy module (source: [18])

The following items indicate the necessary steps for a 3D analysis of a reinforced concrete beam under

4-point bending test, considering previously defined 3D geometries and meshes of beam and reinforcement

steel.

• Load the meshes using on the Mesh drop-down menu;

• Define the model for the case analysis, e.g. 3D;

• Choose the materials and their properties, e.g. Young’s modulus, Poisson’s ratio, etc;

• Insert loading functions and time-step lists, e.g. tell the solver when and with which intensity the loads

should be applied;
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• Define the boundary conditions (BC) and loads, e.g. defined the fixed and pinned supports and the

load region;

• Insert any applicable pre-analysis, e.g. a fluid structure interaction;

• Choose the type of analysis and fine-tune solver parameters, e.g. static linear with Newton-Raphson

method and automatic re-partitioning of time-steps;

• Define any post-processing calculations, e.g. von Mizes;

• Insert fracture and fatigue analysis, if applicable; and

• Define the output data, e.g. tables, spreadsheets, and deformed meshes.

2.3.1 Modeling Reinforced Concrete with code aster and salome meca

Module 4 of the official code aster and salome meca training materials regards civil engineering models,

separating the modeling of reinforced concrete in four categories [46]:

• in a 3D model;

• in a 2D model;

• in a 1D model; and

• with a global model.

3D Model

For a 3D model, four options could be chosen:

1. BARRE (or if needed POU D T);

• Steel meshed with segments of two nodes (SEG2);

• Behavior of the steel is 1D (e.g. GRILLE ISOT LINE);

• Steel and concrete nodes match perfectly; and

• Assume perfect bond between steel and concrete.

2. GRILLE MEMBRANE;

• Steel meshed with plane elements (QUAD4, TRIA3, QUAD8, TRIA6);

• Steel and concrete nodes match perfectly;

• Assume perfect bond between steel and concrete;

• Behavior of the steel is 1D (e.g. GRILLE ISOT LINE); and
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• Meshes for different directions of reinforcement are overlayed.

3. MEMBRANE;

• Steel meshed with plane elements (QUAD4, TRIA3, QUAD8, TRIA6);

• Steel and concrete nodes match perfectly;

• Assume perfect bond between steel and concrete; and

• Limits the behaviour law to linear elastic.

4. 3D.

• Steel meshed with 3D elements;

• Assume perfect bond between steel and concrete; and

• No behaviour law restrictions.

Slippage could be introduced by including 3D INTERFACE elements between the 3D concrete and the

3D or MEMBRANE steel using the behaviour law CZM LAB MIX, as shown in Figure 2.12.

Figure 2.12: Modeling the decohesion steel/concrete (source: [46])

2D Model

For a 2D model, three options could be chosen:

1. 2D BARRE;

• Steel meshed with segments of two nodes (SEG2);

• Behavior of the steel is 1D (e.g. GRILLE ISOT LINE); and
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• Assume perfect bond between steel and concrete.

2. 2D;

• Steel meshed with plane elements (QUAD4, TRIA3, QUAD8, TRIA6);

• No behaviour law restrictions; and

• Assume perfect bond between steel and concrete (decohesion can be introduced by X JOINT

elements with JOINT BA law).

3. GRILLE EXCENTREE.

• Steel meshed with the plane elements QUAD4 or TRIA3;

• Meshes for different directions of reinforcement are overlayed;

• Assume perfect bond between steel and concrete; and

• Limits the behaviour law to 1D.

1D Model

Modeling the steel in reinforced concrete for a 1D model requires the use of the multi-fiber beam POU D EM

or POU D TGM. The beam is meshed in a 1D dimension sections of the beam are defined point by point,

as shown in Figure 2.13.

Figure 2.13: 1D Multi-fiber modeling of reinforced concrete beams (source: [46])
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Global Model

A global model requires a homogenization of the materials as one single material on which a global constitutive

law will be applied, with the advantage of more robustness (without softening) [46]. Elements should be of

the type DKTG with one of the following constitutive laws:

• GLRC DM: moderate damage and symmetrical reinforcements;

• DHRC: moderate damage plus cracking; and

• GLRC DAMA: impact damage.

2.4 Mazars Damage Model for Concrete

The model of Mazars [29] was elaborated within a framework of the mechanics of damage.

The stress is given by:

σ = (1 −D)Eεe (2.1)

Where:

• E is the elasticity matrix;

• D is the scalar damage variable; and

• εe is the elastic strain vector.

The continuous damage variable is 0 for a healthy material, and 1 for a damaged one. The elastic strain

controls the state of tension in the material; therefore, the concrete damage is activated after a certain

deformation threshold εd0. Equation 2.2 shows equation defining the damage variable.

D = αβtDt + αβcDc (2.2)

Coefficient β improves the behaviour in shearing, and it is usually fixed at 1.06. Coefficients αt and αc

allows for the damage in tension Dt and compression Dc, respectively.

The laws of evolution of damage Dt and Dc are shown at Equation 2.3 and Equation 2.4

Dt = 1 − (1 −At)d0
εeq

−Ate
−Bt(εeq−εd0) (2.3)

Dc = 1 − (1 −Ac)d0
εeq

−Ace
−Bc(εeq−εd0) (2.4)

At, Ac, Bt, and Bc are parameters of the material and have to be identified by fitting of the one-

dimensional Mazars model into the experimental data.

21



It is worth noticing that εeq is defined from the positive eigenvalues of the deformation tensor, and it

represents the equivalent deformation derived from the principal directions.

2.5 Experimental and Analytical Reexamination of Classic Con-

crete Beam Tests

In 1963, Boris Bresler and A. C. Scordelis published the research paper ”Shear Strength of Reinforced

Concrete Beams” with a primary goal to understating shear-critical behaviour in reinforced concrete [14].

This work has been considered a classic test series used as benchmark data for calibrating or verifying finite

element models for reinforced concrete [10, 74], and was reproduced by F. J. Vecchio and W. Shim in 2004

with a nominally identical set of beams [74].

Figure 2.14 shows the test setup for the Vecchio-Shim Beams. Figure 2.15 shows the cross sections of the

one tested beams, with details shown in Table 2.3.

Figure 2.14: Test setup of the twelve Vecchio-Shim beams; source: [74])

Figure 2.15: Cross-sections of the twelve Vecchio-Shim beams; source: [74])

Table 2.4 shows the reinforcement properties of the OA1 beams and Table 2.5 shows its concrete properties.

Vecchio-Shim OA1 test results are shown in Table 2.6.
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Table 2.3: Cross-Section details of Vecchio-Shim beams

Beam b h d L Span

(id) (mm) (mm) (mm) (mm) (mm) Bottom steel Top steel Stirrups

OA1 305 552 457 4,100 3,660 2 M30, 2M25 - -

adapted from [74]

Table 2.4: Reinforcement properties of Vecchio-Shim beams

Diameter Area fy fu Es

Bar size (mm) (mm2) (MPa) (MPa) (MPa)

M25 25.2 500 445 680 220,000

M30 29.9 700 436 700 200,000

where:

fy is the steel yield stress
fu is the steel ultimate strength
Es is the modulus of elasticity of steel

adapted from [74]

Table 2.5: Concrete properties of Vecchio-Shim beams]

Beam f ′
c ε0 Ec fsp

(id) (MPa) (mm/mm) (MPa) (MPa)

OA1 22.6 0.0016 36,500 2.37

where:

f ′
c is the concrete compressive strength at 28 days cylinder

test
ε0 is the concrete strain at peak cylinder stress
Ec is the modulus of elasticity of concrete
fsp is the concrete split cylinder strength

adapted from [74]

Table 2.6: Test results for Vecchio–Shim beams

Beam P test P calc P test / P calc ∆ test ∆u calc ∆u test / ∆u calc

(id) (kN) (kN) (mm) (mm)

OA1 331 311 1.06 9.1 9.5 0.96

Adapted from [74]
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Chapter 3

Methodology

3.1 Software Setup

A x86 64 Arch Linux operational system, kernel release 5.1.11-arch1-1-ARCH, was used for the simulation.

The processor type was an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, with 15781 MB of RAM.

The binary salome meca package 2018-1 1 was installed from the Arch Linux User Repository (AUR),

keeping all the configurations intact except for the overridden preferences listed on Code 3.1.

The most important was the alteration of the working directory at line 12. During calculation, code aster

writes several files by default on a temporary RAM file system, which may be rapidly filled, halting the

process.

Code 3.1: code aster overridden preferences at ./astkrc/prefs

1 nom_user : _VIDE

2 email : _VIDE

3 def_vers : stable

4 xterm : /usr/bin/xterm

5 editeur : /usr/bin/vi

6 nb_reman : 6

7 langue : ENG

8 dbglevel : 3

9 freq_actu : 3

10 nb_ligne : 20

11 nom_domaine : _VIDE

12 rep_trav: /home/franks/tmp/aster

It is not recommended changing the working directory for systems without SSD, as the calculation per-

formance might be severely impacted.

1https://aur.archlinux.org/packages/salome-meca-bin/
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It is important to note that salome meca does not enforce or allow for any configuration of units. The

choice of units depends on the user. For this project, the beam was modeled in SI units.

3.2 Geometrical Modeling

The first step was the geometrical modeling of the structure. It was in this step that majors points of interest

were defined, e.g. supports, loads and measurable points.

Figure 3.1 shows the geometrical model of the beam in 1D.

Point ’O’ was defined at the origin of the Euclidean space. At this point, load was applied and deflections

were measured. Although it might look contradictory, only a line representing the beam needed to be drawn;

therefore, a 1D model along the beam length.

Along the ’X’ axis, points ’LS’ and ’RS’ were the left and right supports, respectively. They were 2.05

meters distant from the origin: ’LS’ at (−1.83, 0.00, 0.00) and ’RS’ at (1.83, 0.00, 0.00).

The beam extremities were also defined along the ’X’ axis, ’LE’ at (−2.05, 0.00, 0.00) and ’RE’ at

(2.05, 0.00, 0.00).

Finally, lines were drawn connecting the five points. Line ’R’ connected the right extreme point ’RE’ to

the right support point ’RS’. Reciprocally, line ’L’ connected the left extreme point ’LE’ to the left support

point ’LS’.

Figure 3.1: Geometrical modeling of the beam

In addition, it was necessary to create a cross section that would later be replicated throughout the beam.

The rectangular face is drawn with center at origin, height along the ’Y’ axis and width along the ’X’ axis.

A unitary thickness is draw, which would later be ignored by the solver. The final dimensions were (0.305,

0.552, 1.000).

Using the dump Python functionality of salome meca, the geometry can be exported to a Python file,

which is easily readable. The full code is available at Appendix A, with an excerpt at Code 3.2.

Code 3.2: Definition of points in Python

1 O = geompy.MakeVertex(0, 0, 0)

2 OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
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3 OY = geompy.MakeVectorDXDYDZ(0, 1, 0)

4 OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)

5 LS = geompy.MakeVertex(-1.83, 0, 0)

6 RS = geompy.MakeVertex(1.83, 0, 0)

7 LE = geompy.MakeVertex(-2.05, 0, 0)

8 RE = geompy.MakeVertex(2.05, 0, 0)

The origin was defined at line 1, followed by three vectors defining the Euclidean space. Lines 5 and 6

defined the supports, and lines 7 and 8 defined the extremities of the beam.

From the geometrical entities, two different compounds were defined: ’Section’ and ’Beam’. They would

hold together the entities and groups for later reference.

3.3 Meshing

Two different meshes were created.

The first, named ’SECTION’, as shown in isometric view at Figure 3.2, had a simple 2D quadrangu-

lar mapping with standard parameters. Submeshes ’V’ (vertical) and ’H’ (horizontal) were both 1D wire

discretisation with predefined number of segments of 32 and 16, respectively.

Figure 3.2: Meshing of the section
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The second mesh, name ’BEAM’, had two submeshes: ’Extreme’ for the lines connecting the extremities

to the support points; and ’Internal’ for the lines connecting the support points to the origin. The external

submesh had a total of 6 elements, whereas the internal submesh had a total of 2 elements. Therefore,

’BEAM’ mesh had 8 elements, as shown at Figure 3.4.

On each of the 9 nodes of the ’BEAM’ mesh, 608 elements (Figure 3.3) were created.

Figure 3.3: ’SECTION’ mesh information Figure 3.4: ’BEAM’ mesh informations

Four groups were used in the simulation: three nodes (’LS’, ’O’, and ’RS’); and one group of edges for

the whole beam.

3.4 AsterStudy

The AsterStudy module allows for the generation of command files with a graphic user interface (GUI);

however, this project adopts the Python command file directly, which is available at Appendix B. With

practice in salome meca, it is easier and faster to write the file directly than using the GUI.

Code 3.3 shows the beginning of the command file. It started with DEBUT(LANG=’EN’), defining the

language. Several variables were then assigned. Note that the concrete tension resistance was defined using

the formula 0.33
√
f ′c, used at the definition of the deformation threshold. Mazars’ parameters were then

defined and, at last, the reinforcement steel parameters.
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Code 3.3: Assignment of numerical values to variables

1 DEBUT(LANG='EN')

2

3 FCJ_c = 22.60E+06

4 EIJ_c = 36500.0E+06

5 NU_c = 0.22

6 FTJ_c = 0.33 * sqrt(FCJ_c / 1e+06) * 1e+06

7 EPSI_C_c = 1.6E-03

8 EPSD0_c = FTJ_c / EIJ_c

9 BT_c = 21000.0

10 AT_c = 1.0

11 BC_c = 2000.0

12 AC_c = 0.33

13 K_c = 0.7

14 Signl_c = 13560000

15 EPSIl_c = 0.0035

16 RHO_c = 2400.0,

17 NU_s = 0.33,

18 RHO_s = 7800.0,

19 Yng_25 = 2.2E+11

20 Sy_25 = 445.0E+06

21 DSiEp_25 = Yng_25 / 1.0E+04

22 Yng_30 = 2.0E+11

23 Sy_30 = 436.0E+06

24 DSiEp_30 = Yng_30 / 1.0E+04

Next, the meshes were read with the the command ’LIRE MAILLAGE’ at Code 3.4. ’MAPOU’ refers to

the ’BEAM’ mesh, and ’MASEC’ refers to the ’SECTION’ mesh. Every input and output in salome meca has

a number associated to the file. Line 2 associated the ’UNITE’ 5 to the ’BEAM’ mesh, and line 5 associated

the ’UNITE’ 20 to the ’SECTION’ mesh.

Code 3.4: Reading of the mesh

1 MAPOU = LIRE_MAILLAGE(FORMAT='MED',

2 UNITE=5)

3
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4 MASEC = LIRE_MAILLAGE(FORMAT='MED',

5 UNITE=20)

Geometries of the fibers were defined with the command DEFI GEOM FIBRE at Code 3.5. All fibers

were defined according to the section centre in the (x, y) plane. The pattern of reinforcement steel assignment

was (coordinate x, coordinate y, diameter). Concrete fibers were defined between lines 10 and 13.

Code 3.5: Definition of fibers

1 GF = DEFI_GEOM_FIBRE(FIBRE=(_F(CARA='DIAMETRE',

2 COOR_AXE_POUTRE=(0.0, 0.0),

3 GROUP_FIBRE='SACI_25',

4 VALE=(0.0915, -0.148, 0.0252, -0.0915, -0.148,

0.0252)),↪→

5 _F(CARA='DIAMETRE',

6 COOR_AXE_POUTRE=(0.0, 0.0),

7 GROUP_FIBRE='SACI_30',

8 VALE=(0.089, -0.212, 0.0299, -0.089, -0.212,

0.0299))),↪→

9 INFO=2,

10 SECTION=_F(COOR_AXE_POUTRE=(0.0, 0.0),

11 GROUP_FIBRE='SBET',

12 MAILLAGE_SECT=MASEC,

13 TOUT_SECT='OUI'))

Code 3.6 shows the definition of the finite element model: mechanical analysis using POU D EM affecting

all meshes.

Code 3.6: Definition of the model

1 MOPOU = AFFE_MODELE(AFFE=_F(MODELISATION='POU_D_EM',

2 PHENOMENE='MECANIQUE',

3 TOUT='OUI'),

4 MAILLAGE=MAPOU)

Code 3.7 integrated the concrete and reinforcement steel fibers to the model ’MOPOU’ defined at Code 3.6.

Geometry of fibers ’GF’ was affected by the command ’AFFE CARA ELEM’, assigning the model ’MOPOU’

and specifying the multiple fibers previously defined. It is important to note an overlap between the concrete

and reinforcement steel fibers; therefore, there is a higher tolerance for the difference in the moment of inertia.
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Code 3.7: Definition of the model

1 POUCA = AFFE_CARA_ELEM(GEOM_FIBRE=GF,

2 MODELE=MOPOU,

3 MULTIFIBRE=_F(GROUP_FIBRE=('SBET', 'SACI_25', 'SACI_30'),

4 GROUP_MA='POUTRE',

5 PREC_AIRE=0.02,

6 PREC_INERTIE=0.25),

7 ORIENTATION=_F(CARA='ANGL_VRIL',

8 GROUP_MA='POUTRE',

9 VALE=-90.0),

10 POUTRE=_F(CARA=('HY', 'HZ'),

11 GROUP_MA='POUTRE',

12 SECTION='RECTANGLE',

13 VALE=(0.305, 0.552)))

Code 3.8 defined the materials to be assigned to each fiber: ’BETON’ with the Mazars model assigned

to the sections; ’AC 25’ and ’AC 30’ to the reinforcement steel fibers.

Code 3.8: Definition of materials

1 BETON = DEFI_MATER_GC(INFO=2,

2 MAZARS=_F(AC=AC_c,

3 AT=AT_c,

4 BC=BC_c,

5 BT=BT_c,

6 CODIFICATION='ESSAI',

7 EIJ=EIJ_c,

8 EPSD0=EPSD0_c,

9 EPSI_C=EPSI_C_c,

10 EPSI_LIM=EPSIl_c,

11 FCJ=FCJ_c,

12 FTJ=FTJ_c,

13 K=K_c,

14 NU=NU_c,

15 SIGM_LIM=Signl_c),

16 RHO=RHO_c)
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17

18 AC_25 = DEFI_MATER_GC(ACIER=_F(D_SIGM_EPSI=DSiEp_25,

19 E=Yng_25,

20 SY=Sy_25),

21 RHO=RHO_s)

22

23 AC_30 = DEFI_MATER_GC(ACIER=_F(D_SIGM_EPSI=DSiEp_30,

24 E=Yng_30,

25 SY=Sy_30),

26 RHO=RHO_s)

27

28 MATOR = DEFI_MATERIAU(ELAS=_F(E=2e+11,

29 NU=0.0,

30 RHO=RHO_s)

Code 3.9 defined functions and lists for use during calculation: ’FOFO’, ’LINSTD’, and ’LINST’.

The first, ’FOFO’, was a straight line between the origin and (13, 13). The abscissa would be taken as

calculation time, and the ordinate would be taken as a multiplication factor for the vertical displacement.

The second, ’LINSTD’, defined the calculation steps: 2 intervals until the instant 0.1; and a 0.25 separation

time between calculations until the instant 13, i.e. 4 intervals per second. Instant 0.1 was introduced to

evaluate if the beam dead load is correctly applied.

The thirds, ’LINST’, allowed for dynamic subdivision of steps in case of lengthy convergence.

Code 3.9: Definition of functions

1 FOFO = DEFI_FONCTION(NOM_PARA='INST',

2 PROL_DROITE='EXCLU',

3 PROL_GAUCHE='EXCLU',

4 VALE=(0.0, 0.0, 13.0, 13.0))

5

6 LINSTD = DEFI_LIST_REEL(DEBUT=0.0,

7 INTERVALLE=(_F(JUSQU_A=0.1,

8 NOMBRE=2),

9 _F(JUSQU_A=13.0,

10 PAS=0.25)))

11

12 LINST = DEFI_LIST_INST(DEFI_LIST=_F(LIST_INST=LINSTD),
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13 ECHEC=_F(ACTION='DECOUPE',

14 EVENEMENT='ERREUR',

15 SUBD_METHODE='MANUEL',

16 SUBD_NIVEAU=5,

17 SUBD_PAS=4,

18 SUBD_PAS_MINI=1e-10),

19 METHODE='MANUEL')

Code 3.10 defined the boundary conditions of the simulation. The support at the left ’LS’ was a pin, and

the support at the right ’RS’ was a roller. A displacement of 1 millimeter was imposed at the origin, along the

negative direction of the ’Y’ axis. Paired with the multiplication factor previously defined, a displacement

of 1 millimeter per second can be achieved. Nonlinear calculations have been historically more stable using

displacements than loads in salome meca.

Code 3.10: Boundary conditions

1 BLOCAGE = AFFE_CHAR_MECA(DDL_IMPO=(_F(DRX=0.0,

2 DRY=0.0,

3 DX=0.0,

4 DY=0.0,

5 DZ=0.0,

6 GROUP_NO='LS'),

7 _F(DY=0.0,

8 GROUP_NO='RS')),

9 MODELE=MOPOU)

10

11 DEPIMP = AFFE_CHAR_MECA(DDL_IMPO=_F(DY=-0.001,

12 GROUP_NO='O'),

Code 3.11 defined the material behaviour: von Mises for the reinforcement steel, and Mazars for the

concrete. The behaviour was then assigned to the beam at line 13.

Code 3.11: Material behaviour

1 PMFMAZAR = DEFI_COMPOR(GEOM_FIBRE=GF,

2 MATER_SECT=MATOR,

3 MULTIFIBRE=(_F(GROUP_FIBRE='SACI_25',

4 MATER=AC_25,
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5 RELATION='VMIS_CINE_GC'),

6 _F(GROUP_FIBRE='SACI_30',

7 MATER=AC_30,

8 RELATION='VMIS_CINE_GC'),

9 _F(GROUP_FIBRE=('SBET', ),

10 MATER=BETON,

11 RELATION='MAZARS_GC')))

12

13 MATMAZAR = AFFE_MATERIAU(AFFE=_F(GROUP_MA='POUTRE',

14 MATER=(AC_25, AC_30, BETON, MATOR)),

15 AFFE_COMPOR=_F(COMPOR=PMFMAZAR,

16 GROUP_MA='POUTRE'),

17 MAILLAGE=MAPOU)

Code 3.12 defined the analysis type, convergence limits for avoiding infinite loops, the loads and supports

, instant increments, and solver type.

The analysis type was static nonlinear, applied to the model previously defined with multi-fiber relation-

ship. A convergence criterion of maximum iterations was imposed to avoid locked loops. In addition, a global

precision of 10 micrometers was defined. Although it might seem excessively precise, divergences might occur

in case of larger precision.

Loads and support were defined between lines 6 and 8. Note the multiplication factor acting on the load

at line 8.

The increment list of instants was defined at line 9.

Finally, solver configurations were indicated at lines 11 and 12. In this specific case, a tangent matrix

would be used on every iteration of the Newton-Raphson method.

Code 3.12: Material behaviour

1 U1MAZAR = STAT_NON_LINE(CARA_ELEM=POUCA,

2 CHAM_MATER=MATMAZAR,

3 COMPORTEMENT=_F(RELATION='MULTIFIBRE'),

4 CONVERGENCE=_F(ITER_GLOB_MAXI=10,

5 RESI_GLOB_RELA=1e-05),

6 EXCIT=(_F(CHARGE=BLOCAGE),

7 _F(CHARGE=DEPIMP,

8 FONC_MULT=FOFO)),

9 INCREMENT=_F(LIST_INST=LINST),
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10 MODELE=MOPOU,

11 NEWTON=_F(MATRICE='TANGENTE',

12 REAC_ITER=1))

Code 3.13 shows the post-processing tasks, applied after the displacements have been solved.

The first task was the calculation of reactions on all nodes, followed by elastic and inelastic deformations.

At last, the nodal reactions at the supports ’LS’ and ’RS’ were calculated.

Code 3.13: Post-processing

1 U1MAZAR = CALC_CHAMP(reuse=U1MAZAR,

2 FORCE=('REAC_NODA', ),

3 RESULTAT=U1MAZAR)

4

5 U1MAZAR = CALC_CHAMP(reuse=U1MAZAR,

6 DEFORMATION=('EPSI_ELGA', 'EPSP_ELGA'),

7 RESULTAT=U1MAZAR)

8

9 SUM_REAC = POST_RELEVE_T(ACTION=_F(GROUP_NO=('LS', 'RS'),

10 INTITULE='sum reactions',

11 MOYE_NOEUD='OUI',

12 NOM_CHAM='REAC_NODA',

13 OPERATION=('EXTRACTION', ),

14 REPERE='GLOBAL',

15 RESULTANTE=('DX', 'DY', 'DZ'),

16 RESULTAT=U1MAZAR,

17 TOUT_ORDRE='OUI'))

Code 3.14 was the last part of the command file, where the results were exported.

Code 3.14: Exporting results

1 IMPR_RESU(FORMAT='RESULTAT',

2 MODELE=MOPOU,

3 RESU=_F(GROUP_NO=('O', ),

4 MAILLAGE=MAPOU,

5 NOM_CAS=('DY', ),

6 NOM_CHAM=('DEPL', ),
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7 RESULTAT=U1MAZAR),

8 UNITE=3)

9

10 IMPR_RESU(FORMAT='RESULTAT',

11 MODELE=MOPOU,

12 RESU=_F(GROUP_NO=('LS', 'RS'),

13 NOM_CHAM=('REAC_NODA', ),

14 NOM_CMP=('DY', ),

15 RESULTAT=U1MAZAR,

16 VALE_MAX='OUI',

17 VALE_MIN='OUI'),

18 UNITE=8)

19

20 IMPR_TABLE(TABLE=SUM_REAC,

21 UNITE=2)

22

23 FIN()

Switching to the ’History View’ tab at AsterStudy, the case can be run with the parameters shown at

Figure 3.5.

Figure 3.5: Case parameters

‘
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Chapter 4

Results and Analysis

Total solution and calculations were performed in 8.49 seconds in real time (wall clock), with a peak

memory usage of 693.13 Mb, considerably lower than the allotted 2 Gb. Table 4.1 shows the performance

indicators for various stages of the solution process, e.g. elementary calculation, assembly, digital, and

factorization.

USER time refers to the computational time spent on user commands, i.e. those specified by the com-

mand file, e.g. assembling and solving matrix and calculation of displacements. SYSTEM refers to the

computational time the system spent on the calculations, such as saving and accessing the memory, dumping

data into hard drives, and printing information on the screen. The third column sums the previous ones, and

the last column of the table gives the time spent as measured in real time (wall clock). Since the system has

multiple CPUs, the elapsed time is shorter than the summation of the computational times.

Ideally, for each stage of the calculation, the best performance is obtained by a low SYSTEM time and a

USER+SYS time higher than the ELAPSED one. The higher the USER+SYS with regards to the ELAPSED

time, the greater the parallelism.

It is worth noting that DEBUT, which, in principle is only a start command, takes a considerable amount

of time. The reason might be the setup of several files and the allocation of memory for calculation. Indeed,

the ELAPSED time is almost the same as the USER+SYS time, indicating no CPU parallelism. In addition,

both LIRE MAILLAGE, for example, which deal with mesh reading, were delayed by disk accessing.

STAT NON LINEAR, which solves the nonlinear problem, is by far the most intensive calculation stage,

taking 68% of the total USER time and 25% of the total SYSTEM time; however, the high parallelism allows

for a ELAPSED time 74% inferior to the USER+SYS time: 3.16 seconds.

The second most intensive calculation stage is the elastic and inelastic deformations (CALC CHAMP),

taking 3.18 seconds of the USER time and 0.32 seconds of the SYSTEM time, respectively 18% and 25% of

USER and SYSTEM total times.

All other calculation stages were executed in less than 1 second each.

As code aster is built in Fortran with supervision in Python, it is worth comparing the two performances.

Although they are solving different problems, might be a good reference to help to choose FEM approaches:

the ratio between the ELAPSED and USER+SYS times is 41% for Fortran and 86% for Python, which

indicates that Fortran has a better performance than Python in demanding calculations.
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Table 4.1: Time required to run the commands (in seconds

COMMAND USER SYSTEM USER+SYS ELAPSED

init (jdc) 1.38 0.06 1.44 1.45

. compile 0.00 0.00 0.00 0.00

. exec compile 0.18 0.00 0.18 0.18

. report 0.02 0.00 0.02 0.02

. build 0.00 0.00 0.00 0.00

DEBUT 0.04 0.04 0.08 0.07

LIRE MAILLAGE 0.01 0.00 0.01 0.01

LIRE MAILLAGE 0.01 0.01 0.02 0.02

DEFI GEOM FIBRE 0.00 0.00 0.00 0.00

AFFE MODELE 0.01 0.02 0.03 0.01

AFFE CARA ELEM 0.05 0.07 0.12 0.03

DEFI MATER GC 0.06 0.03 0.09 0.02

DEFI MATER GC 0.02 0.05 0.07 0.02

DEFI MATER GC 0.03 0.01 0.04 0.01

DEFI MATERIAU 0.00 0.00 0.00 0.00

DEFI FONCTION 0.00 0.00 0.00 0.00

DEFI LIST REEL 0.00 0.00 0.00 0.00

DEFI LIST INST 0.01 0.00 0.01 0.00

AFFE CHAR MECA 0.00 0.00 0.00 0.01

AFFE CHAR MECA 0.01 0.00 0.01 0.01

DEFI COMPOR 0.00 0.00 0.00 0.00

AFFE MATERIAU 0.02 0.00 0.02 0.01

STAT NON LINE 11.70 0.33 12.03 3.16

CALC CHAMP 0.37 0.23 0.60 0.22

CALC CHAMP 3.18 0.32 3.50 3.11

POST RELEVE T 0.08 0.00 0.08 0.09

IMPR RESU 0.03 0.00 0.03 0.03

IMPR RESU 0.02 0.00 0.02 0.02

IMPR TABLE 0.04 0.00 0.04 0.04

FIN 0.02 0.05 0.07 0.07

. part Superviseur 1.72 0.24 1.96 1.69

. part Fortran 15.49 1.06 16.55 6.80

TOTAL JOB 17.21 1.30 18.51 8.49
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Table 4.2 shows an excerpt of the summation of nodal reactions at the supports in the three directions at

calculated instants. Recall that our model applies one millimeter per instant unit; therefore, at the instant

8.35, for example, the mid-span deflection was 8.35 millimeter, and the summation of the vertical reaction

at the supports was 316.3 kN. As expected, reactions in the directions ’X’ and ’Z’ are negligible.

This displacement control allows for the direct inference of the pair force versus displacement. By in-

spection of Table 4.2, one can observe the maximum vertical force of 334.7 kN at the instant 10.10, i.e. an

ultimate load of 334.7 kN at a mid-span deflection of 10.10 millimeters.

These results reasonably agreed with the Vecchio-Shin’s ultimate loads and deflections. In case of the

ultimate load, salome meca result was 1.1% greater than the experimental value, and 7.6% greater than the

Vecchio-Shin’s prediction. For the deflections, salome meca result was 11.0% greater than Vecchio-Shin’s

calculated mid-span deflection, and 6.3% greater than the experimental one.

The salome meca model so far is adequate to overcome the challenge of calibrating nonlinear finite element

formulations.

Table 4.2: Summation of nodal reactions at the supports (in Newtons)

INST DX DY DZ

8.35 -2.864E-10 3.163E+05 -7.585E-12

8.60 -1.177E-10 3.204E+05 5.760E-13

8.85 3.027E-10 3.242E+05 1.000E-11

9.10 -1.040E-09 3.275E+05 9.561E-12

9.35 -9.713E-10 3.300E+05 -6.105E-12

9.60 -9.907E-10 3.323E+05 -7.992E-13

9.85 -1.213E-09 3.340E+05 -1.176E-12

10.10 7.942E-10 3.347E+05 -5.007E-12

10.35 6.859E-10 3.345E+05 -4.050E-12

10.60 1.971E-09 3.341E+05 2.383E-12

10.85 -8.335E-10 3.326E+05 2.937E-12

11.10 6.219E-10 3.292E+05 -1.312E-12

11.35 -1.141E-09 3.258E+05 5.587E-12

11.60 2.987E-10 3.218E+05 7.758E-12

11.85 -6.698E-10 3.158E+05 1.101E-12

12.10 -5.204E-10 3.099E+05 4.773E-12

12.35 1.717E-10 3.048E+05 -6.192E-12

12.60 -4.943E-10 2.994E+05 1.708E-12

12.85 -2.093E-10 2.919E+05 -1.005E-11

13.00 -1.722E-10 2.876E+05 1.633E-12
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A final comparison with the experimental results can be made by plotting load versus mid-span deflections.

Figure 4.1 shows all curves drawn up to the ultimate load. It can be visually noted an agreement between the

sets of data. However, for a better comparison, the experimental data were fitted (R squared of 0.999) with

the Equation 4.1, plotted in red color in Figure 4.1. Due to over-fitting, the equation is not generalizable,

and it was used only for calculating correlations with the numerical data.

Y = 0.000282428X9 − 0.0114606X8 + 0.19664X7 − 1.86746X6 + 10.8128X5

−39.7294X4 + 93.5588X3 − 139.343X2 + 159.694X − 2.35567
(4.1)

Statistically comparing the salome meca results (plotted in green color in Figure 4.1) with the exper-

imental data leads to an R squared of 0.999, indicating a good fit of the numerical model with the real

data. Vecchio-Shin’s numerical calculations, shown in blue color in Figure 4.1, has an R squared of 0.980.

Therefore, both methods seem to reasonably agree with the experimental data.

Figure 4.1: Load versus mid-span deflections of experimental data from Vechio-Schin and numerical
data from salome meca
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Chapter 5

Summary, Conclusions, and Recommendations

This study was performed to investigate and report the usefulness of the open source software programs

code aster and salome meca in implementing nonlinear quasi-static finite element modeling of reinforced

concrete beams. An extensive literature review about open source software was written, as well as a review

of the software programs code aster and salome meca.

Experimental data from the literature were used for modeling and validating the nonlinear finite element

model of a reinforced concrete beam. The geometry was drawn in the salome meca Geometry module,

followed by meshing in the Mesh module. AsterStudy was started for the creation of a stage; however, the

modeling was written using a text editor rather than the graphic user interface. A one-dimensional beam

model, with a multi-fiber section of concrete and reinforcement steel was used. Mazars damage model was

assigned for concrete fiber, and the reinforcement steel fiber followed a von Mises behaviour.

The open source software programs salome meca and code aster had good performance solving the nonlin-

ear model, calculating all stages in less than nine seconds in real time. Ultimate load and mid-span deflection

were compared to the experimental data, obtaining satisfactory results; thus, FEM was validated.

Even though the development and use of salome meca and code aster by the French electric utility com-

pany speaks for itself as it had been applied in nuclear facilities, results indicate that both software programs

may be adopted. Although the learning curve is steep, there is extensive documentation available online,

and support is also provided by the community on official forums. One major advantage of adopting sa-

lome meca and code aster is that it requires a deep understanding of the model, constraints, limitations, and

configuration options for each stage.

A large database of validating models test-cases1 paired with documentations are available as templates

for new simulations. The use of this database is encouraged for future research, including the simulation

of different models of reinforced concrete beams and validation with the Vecchio-Shin (or Bresler-Scordelis)

data.

The simulation of small strains and small displacements models can also be studied, allowing for easier

comparisons with hand calculations. However, the challenge of nonlinear finite element analysis of reinforced

concrete should not be a deterrent. Buckling, thermal, creep, and corrosion models are also available for use,

requiring only dedication for understanding the concepts, given that the programs are free and open source.

1https://www.code-aster.org/V2/doc/default/en/index.php?man=cas-test
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Appendix A

Geometrical Model

Code A.1: Geometrical model for beam OA1

1 # -*- coding: utf-8 -*-

2

3 ###

4 ### This file is generated automatically by SALOME v8.5.0 with dump python

functionality↪→

5 ###

6

7 import sys

8 import salome

9

10 salome.salome_init()

11 theStudy = salome.myStudy

12

13 import salome_notebook

14 notebook = salome_notebook.NoteBook(theStudy)

15 sys.path.insert( 0, r'/home/franks/M.Eng./model/POU_')

16

17 ###

18 ### GEOM component

19 ###

20

21 import GEOM

22 from salome.geom import geomBuilder

23 import math

24 import SALOMEDS

25

26

27 geompy = geomBuilder.New(theStudy)

28

29 O = geompy.MakeVertex(0, 0, 0)

30 OX = geompy.MakeVectorDXDYDZ(1, 0, 0)

31 OY = geompy.MakeVectorDXDYDZ(0, 1, 0)

32 OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)

33 O_1 = geompy.MakeVertex(0, 0, 0)

34 LS = geompy.MakeVertex(-1.83, 0, 0)

35 RS = geompy.MakeVertex(1.83, 0, 0)

36 Section = geompy.MakeFaceHW(0.305, 0.552, 1)

37 [Wire_1] = geompy.ExtractShapes(Section, geompy.ShapeType["WIRE"], True)

38 [Vertex_1,Vertex_2,Vertex_3,Vertex_4] = geompy.ExtractShapes(Section,

geompy.ShapeType["VERTEX"], True)↪→

39 [Edge_1,Edge_2,Edge_3,Edge_4] = geompy.ExtractShapes(Wire_1,

geompy.ShapeType["EDGE"], True)↪→

40 Auto_group_for_V = geompy.CreateGroup(Section, geompy.ShapeType["EDGE"])

41 geompy.UnionList(Auto_group_for_V, [Edge_1, Edge_4])

46



42 Auto_group_for_Sub_mesh_1 = geompy.CreateGroup(Section, geompy.ShapeType["EDGE"])

43 geompy.UnionList(Auto_group_for_Sub_mesh_1, [Edge_2, Edge_3])

44 LE = geompy.MakeVertex(-2.05, 0, 0)

45 RE = geompy.MakeVertex(2.05, 0, 0)

46 L = geompy.MakeLineTwoPnt(LE, LS)

47 LB = geompy.MakeLineTwoPnt(LS, O_1)

48 RB = geompy.MakeLineTwoPnt(O_1, RS)

49 R = geompy.MakeLineTwoPnt(RS, RE)

50 Beam = geompy.MakeCompound([LE, LS, O_1, RS, RE, L, LB, RB, R])

51 [L_1,LB_1,RB_1,R_1] = geompy.ExtractShapes(Beam, geompy.ShapeType["EDGE"], True)

52 [LE_1,LS_1,O_2,RS_1,RE_1] = geompy.ExtractShapes(Beam, geompy.ShapeType["VERTEX"],

True)↪→

53 Auto_group_for_Extreme = geompy.CreateGroup(Beam, geompy.ShapeType["EDGE"])

54 geompy.UnionList(Auto_group_for_Extreme, [L_1, R_1])

55 Auto_group_for_Internal = geompy.CreateGroup(Beam, geompy.ShapeType["EDGE"])

56 geompy.UnionList(Auto_group_for_Internal, [LB_1, RB_1])

57 geompy.addToStudy( O, 'O' )

58 geompy.addToStudy( OX, 'OX' )

59 geompy.addToStudy( OY, 'OY' )

60 geompy.addToStudy( OZ, 'OZ' )

61 geompy.addToStudy( O_1, 'O' )

62 geompy.addToStudy( LS, 'LS' )

63 geompy.addToStudy( RS, 'RS' )

64 geompy.addToStudyInFather( Beam, RB_1, 'RB' )

65 geompy.addToStudy( RE, 'RE' )

66 geompy.addToStudy( R, 'R' )

67 geompy.addToStudy( LE, 'LE' )

68 geompy.addToStudy( L, 'L' )

69 geompy.addToStudy( LB, 'LB' )

70 geompy.addToStudy( RB, 'RB' )

71 geompy.addToStudy( Beam, 'Beam' )

72 geompy.addToStudy( Section, 'Section' )

73 geompy.addToStudyInFather( Section, Auto_group_for_Sub_mesh_1,

'Auto_group_for_Sub-mesh_1' )↪→

74 geompy.addToStudyInFather( Beam, LB_1, 'LB' )

75 geompy.addToStudyInFather( Section, Auto_group_for_V, 'Auto_group_for_V' )

76 geompy.addToStudyInFather( Beam, R_1, 'R' )

77 geompy.addToStudyInFather( Section, Wire_1, 'Wire_1' )

78 geompy.addToStudyInFather( Section, Vertex_1, 'Vertex_1' )

79 geompy.addToStudyInFather( Section, Vertex_2, 'Vertex_2' )

80 geompy.addToStudyInFather( Section, Vertex_3, 'Vertex_3' )

81 geompy.addToStudyInFather( Section, Vertex_4, 'Vertex_4' )

82 geompy.addToStudyInFather( Wire_1, Edge_1, 'Edge_1' )

83 geompy.addToStudyInFather( Wire_1, Edge_2, 'Edge_2' )

84 geompy.addToStudyInFather( Wire_1, Edge_3, 'Edge_3' )

85 geompy.addToStudyInFather( Wire_1, Edge_4, 'Edge_4' )

86 geompy.addToStudyInFather( Beam, L_1, 'L' )

87 geompy.addToStudyInFather( Beam, LE_1, 'LE' )

88 geompy.addToStudyInFather( Beam, LS_1, 'LS' )

89 geompy.addToStudyInFather( Beam, O_2, 'O' )

90 geompy.addToStudyInFather( Beam, RS_1, 'RS' )

91 geompy.addToStudyInFather( Beam, RE_1, 'RE' )

92 geompy.addToStudyInFather( Beam, Auto_group_for_Extreme, 'Auto_group_for_Extreme' )
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93 geompy.addToStudyInFather( Beam, Auto_group_for_Internal, 'Auto_group_for_Internal' )

48



Appendix B

Command File

Code B.1: Command file for Beam OA1

1 DEBUT(LANG='EN')

2

3 FCJ_c = 22.60E+06

4

5 EIJ_c = 36500.0E+06

6

7 NU_c = 0.22

8

9 FTJ_c = 0.33 * sqrt(FCJ_c / 1e+06) * 1e+06

10

11 EPSI_C_c = 1.6E-03

12

13 EPSD0_c = FTJ_c / EIJ_c

14

15 BT_c = 21000.0

16

17 AT_c = 1.0

18

19 BC_c = 2000.0

20

21 AC_c = 0.33

22

23 K_c = 0.7

24

25 Signl_c = 13560000

26

27 EPSIl_c = 0.0035

28

29 RHO_c = 2400.0,

30

31 NU_s = 0.33,

32

33 RHO_s = 7800.0,

34

35 Yng_25 = 2.2E+11

36

37 Sy_25 = 445.0E+06

38

39 DSiEp_25 = Yng_25 / 1.0E+04

40

41 Yng_30 = 2.0E+11

42

43 Sy_30 = 436.0E+06

44

49



45 DSiEp_30 = Yng_30 / 1.0E+04

46

47 MAPOU = LIRE_MAILLAGE(FORMAT='MED',

48 UNITE=5)

49

50 MASEC = LIRE_MAILLAGE(FORMAT='MED',

51 UNITE=20)

52

53 GF = DEFI_GEOM_FIBRE(FIBRE=(_F(CARA='DIAMETRE',

54 COOR_AXE_POUTRE=(0.0, 0.0),

55 GROUP_FIBRE='SACI_25',

56 VALE=(0.0915, -0.148, 0.0252, -0.0915, -0.148,

0.0252)),↪→

57 _F(CARA='DIAMETRE',

58 COOR_AXE_POUTRE=(0.0, 0.0),

59 GROUP_FIBRE='SACI_30',

60 VALE=(0.089, -0.212, 0.0299, -0.089, -0.212,

0.0299))),↪→

61 INFO=2,

62 SECTION=_F(COOR_AXE_POUTRE=(0.0, 0.0),

63 GROUP_FIBRE='SBET',

64 MAILLAGE_SECT=MASEC,

65 TOUT_SECT='OUI'))

66

67 MOPOU = AFFE_MODELE(AFFE=_F(MODELISATION='POU_D_EM',

68 PHENOMENE='MECANIQUE',

69 TOUT='OUI'),

70 MAILLAGE=MAPOU)

71

72 POUCA = AFFE_CARA_ELEM(GEOM_FIBRE=GF,

73 MODELE=MOPOU,

74 MULTIFIBRE=_F(GROUP_FIBRE=('SBET', 'SACI_25', 'SACI_30'),

75 GROUP_MA='POUTRE',

76 PREC_AIRE=0.02,

77 PREC_INERTIE=0.25),

78 ORIENTATION=_F(CARA='ANGL_VRIL',

79 GROUP_MA='POUTRE',

80 VALE=-90.0),

81 POUTRE=_F(CARA=('HY', 'HZ'),

82 GROUP_MA='POUTRE',

83 SECTION='RECTANGLE',

84 VALE=(0.305, 0.552)))

85

86 BETON = DEFI_MATER_GC(INFO=2,

87 MAZARS=_F(AC=AC_c,

88 AT=AT_c,

89 BC=BC_c,

90 BT=BT_c,

91 CODIFICATION='ESSAI',

92 EIJ=EIJ_c,

93 EPSD0=EPSD0_c,

94 EPSI_C=EPSI_C_c,

95 EPSI_LIM=EPSIl_c,
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96 FCJ=FCJ_c,

97 FTJ=FTJ_c,

98 K=K_c,

99 NU=NU_c,

100 SIGM_LIM=Signl_c),

101 RHO=RHO_c)

102

103 AC_25 = DEFI_MATER_GC(ACIER=_F(D_SIGM_EPSI=DSiEp_25,

104 E=Yng_25,

105 SY=Sy_25),

106 RHO=RHO_s)

107

108 AC_30 = DEFI_MATER_GC(ACIER=_F(D_SIGM_EPSI=DSiEp_30,

109 E=Yng_30,

110 SY=Sy_30),

111 RHO=RHO_s)

112

113 MATOR = DEFI_MATERIAU(ELAS=_F(E=2e+11,

114 NU=0.0,

115 RHO=RHO_s))

116

117 FOFO = DEFI_FONCTION(NOM_PARA='INST',

118 PROL_DROITE='EXCLU',

119 PROL_GAUCHE='EXCLU',

120 VALE=(0.0, 0.0, 13.0, 13.0))

121

122 LINSTD = DEFI_LIST_REEL(DEBUT=0.0,

123 INTERVALLE=(_F(JUSQU_A=0.1,

124 NOMBRE=2),

125 _F(JUSQU_A=13.0,

126 PAS=0.25)))

127

128 LINST = DEFI_LIST_INST(DEFI_LIST=_F(LIST_INST=LINSTD),

129 ECHEC=_F(ACTION='DECOUPE',

130 EVENEMENT='ERREUR',

131 SUBD_METHODE='MANUEL',

132 SUBD_NIVEAU=5,

133 SUBD_PAS=4,

134 SUBD_PAS_MINI=1e-10),

135 METHODE='MANUEL')

136

137 BLOCAGE = AFFE_CHAR_MECA(DDL_IMPO=(_F(DRX=0.0,

138 DRY=0.0,

139 DX=0.0,

140 DY=0.0,

141 DZ=0.0,

142 GROUP_NO='LS'),

143 _F(DY=0.0,

144 GROUP_NO='RS')),

145 MODELE=MOPOU)

146

147 DEPIMP = AFFE_CHAR_MECA(DDL_IMPO=_F(DY=-0.001,

148 GROUP_NO='O'),

51



149 MODELE=MOPOU)

150

151 PMFMAZAR = DEFI_COMPOR(GEOM_FIBRE=GF,

152 MATER_SECT=MATOR,

153 MULTIFIBRE=(_F(GROUP_FIBRE='SACI_25',

154 MATER=AC_25,

155 RELATION='VMIS_CINE_GC'),

156 _F(GROUP_FIBRE='SACI_30',

157 MATER=AC_30,

158 RELATION='VMIS_CINE_GC'),

159 _F(GROUP_FIBRE=('SBET', ),

160 MATER=BETON,

161 RELATION='MAZARS_GC')))

162

163 MATMAZAR = AFFE_MATERIAU(AFFE=_F(GROUP_MA='POUTRE',

164 MATER=(AC_25, AC_30, BETON, MATOR)),

165 AFFE_COMPOR=_F(COMPOR=PMFMAZAR,

166 GROUP_MA='POUTRE'),

167 MAILLAGE=MAPOU)

168

169 U1MAZAR = STAT_NON_LINE(CARA_ELEM=POUCA,

170 CHAM_MATER=MATMAZAR,

171 COMPORTEMENT=_F(RELATION='MULTIFIBRE'),

172 CONVERGENCE=_F(ITER_GLOB_MAXI=10,

173 RESI_GLOB_RELA=1e-05),

174 EXCIT=(_F(CHARGE=BLOCAGE),

175 _F(CHARGE=DEPIMP,

176 FONC_MULT=FOFO)),

177 INCREMENT=_F(LIST_INST=LINST),

178 MODELE=MOPOU,

179 NEWTON=_F(MATRICE='TANGENTE',

180 REAC_ITER=1))

181

182 U1MAZAR = CALC_CHAMP(reuse=U1MAZAR,

183 FORCE=('REAC_NODA', ),

184 RESULTAT=U1MAZAR)

185

186 U1MAZAR = CALC_CHAMP(reuse=U1MAZAR,

187 DEFORMATION=('EPSI_ELGA', 'EPSP_ELGA'),

188 RESULTAT=U1MAZAR)

189

190 SUM_REAC = POST_RELEVE_T(ACTION=_F(GROUP_NO=('LS', 'RS'),

191 INTITULE='sum reactions',

192 MOYE_NOEUD='OUI',

193 NOM_CHAM='REAC_NODA',

194 OPERATION=('EXTRACTION', ),

195 REPERE='GLOBAL',

196 RESULTANTE=('DX', 'DY', 'DZ'),

197 RESULTAT=U1MAZAR,

198 TOUT_ORDRE='OUI'))

199

200 IMPR_RESU(FORMAT='RESULTAT',

201 MODELE=MOPOU,
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202 RESU=_F(GROUP_NO=('O', ),

203 MAILLAGE=MAPOU,

204 NOM_CAS=('DY', ),

205 NOM_CHAM=('DEPL', ),

206 RESULTAT=U1MAZAR),

207 UNITE=3)

208

209 IMPR_RESU(FORMAT='RESULTAT',

210 MODELE=MOPOU,

211 RESU=_F(GROUP_NO=('LS', 'RS'),

212 NOM_CHAM=('REAC_NODA', ),

213 NOM_CMP=('DY', ),

214 RESULTAT=U1MAZAR,

215 VALE_MAX='OUI',

216 VALE_MIN='OUI'),

217 UNITE=8)

218

219 IMPR_TABLE(TABLE=SUM_REAC,

220 UNITE=2)

221

222 FIN()
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