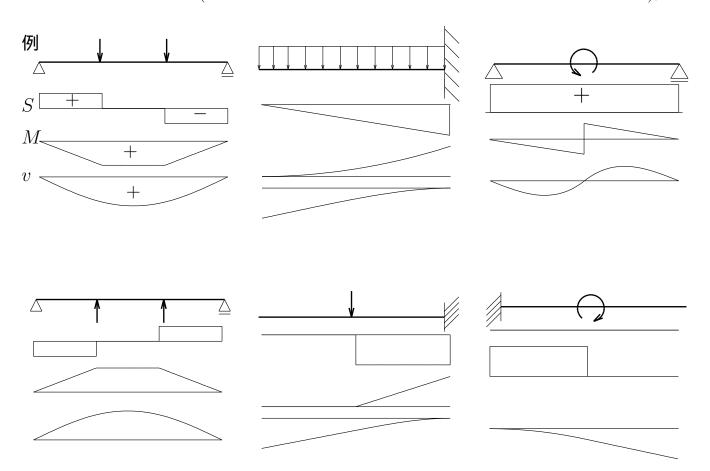
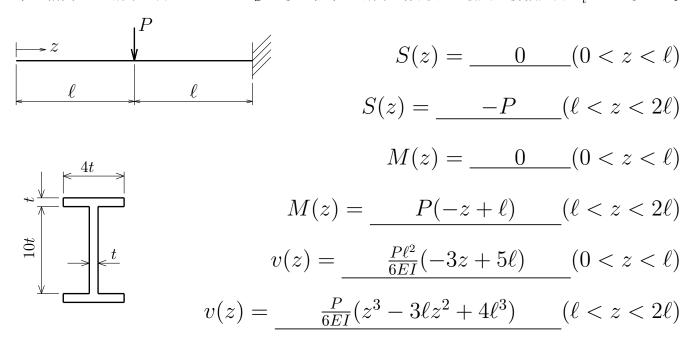
構造力学 II 定期試験 1 枚目	(10/8/3) 学籍番号	氏名	
		~ H	

問 1: 例にならって,せん断力図 (S),曲げモーメント図 (M),たわみ図 (v) の概形を描け。 <u>せん断力図は軸線の上が +,曲げモーメント図とたわみ図は軸線の下が + とする。</u>なお、直線か曲線かが判別できるように描くこと (必要なら「ここまで曲線、ここから直線」などと書き入れてもよい)。

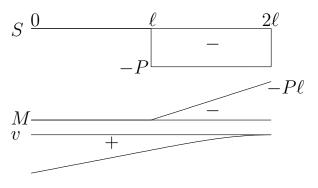


図のように中央に集中荷重を受ける片持ち梁について、左端を原点として梁軸に沿って右向 き正にz 軸を取り、せん断力S(z),曲げモーメントM(z),たわみv(z) を、z の関数として求めよ。 なお、曲げ剛性は EI とする。また、梁の断面が図のような I 型断面をしているとき、この I 型断面 の中立軸回りの断面 2 次モーメント I_x を求め、梁の断面に作用する最大の引張応力 σ_t^{max} を求めよ。



たわみは、M = -EIv'' より、 $0 < z < \ell$ と $\ell < z < 2\ell$ の区間で、それぞれ $-EIv_{\mathtt{x}}^{\prime\prime} = 0$ と $-EIv''_{t} = P(-z+\ell)$ を 2 回ずつ積分す る。そうすると積分定数が4個出てくるので、 境界条件 $v(2\ell) = 0$, $v'(2\ell) = 0$ と連続条件 $v_{\pm}(\ell) = v_{\pm}(\ell)$ と $v_{\pm}'(\ell) = v_{\pm}'(\ell)$ とで積分定数 を決定する。

断面 2 次モーメントは、大きい長方形か ら小さい長方形2個ぶんを引けばいいので、 $rac{4t(12t)^3}{12} - rac{3t(10t)^3}{12}$ で求まる。曲げモーメントが最 大となるのは、右端の固定端部で $M_{max} = -P\ell$. よって最大の引張応力は、 $\sigma_{zz}=rac{M}{\tau}y$ より $\sigma_{zz}(y=-6t,z=2\ell) = \frac{-PL}{326t^4}(-6t) = \frac{3PL}{163t^3}$



たわみ図の $0 < z < \ell$ は直線

$$I_x = \underline{\qquad 326t^4}$$

$$\sigma_t^{max} = \underline{\qquad \frac{3P\ell}{163t^3}}$$