Introduction into design engineering week 1

Dr. Yukari AOKI

Introduction

Objectives

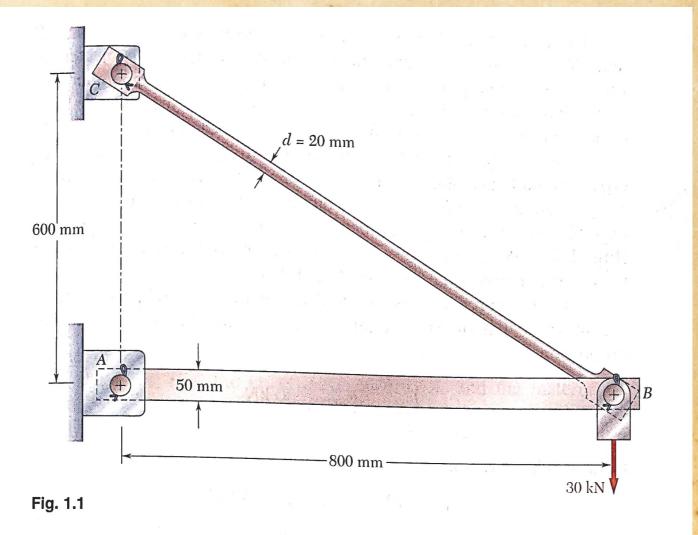
The main objectives of this class should be to develop in the engineering students the

<u>1: Ability to analyze a given problem in simple</u> and logical manner

2: Apply to its solution a few fundamental and well-understood principles.

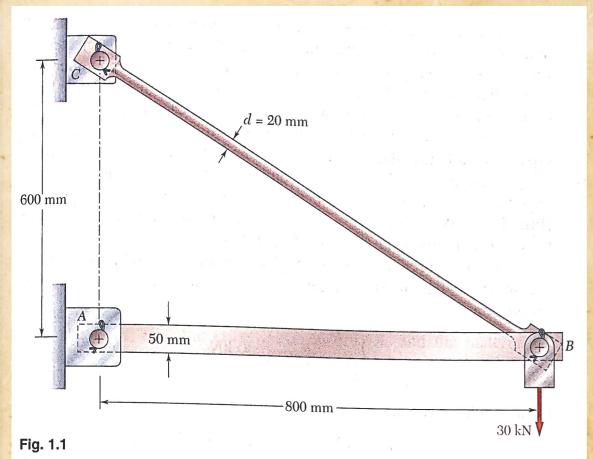
Week1: introduction of this week

• The basic methods of statics



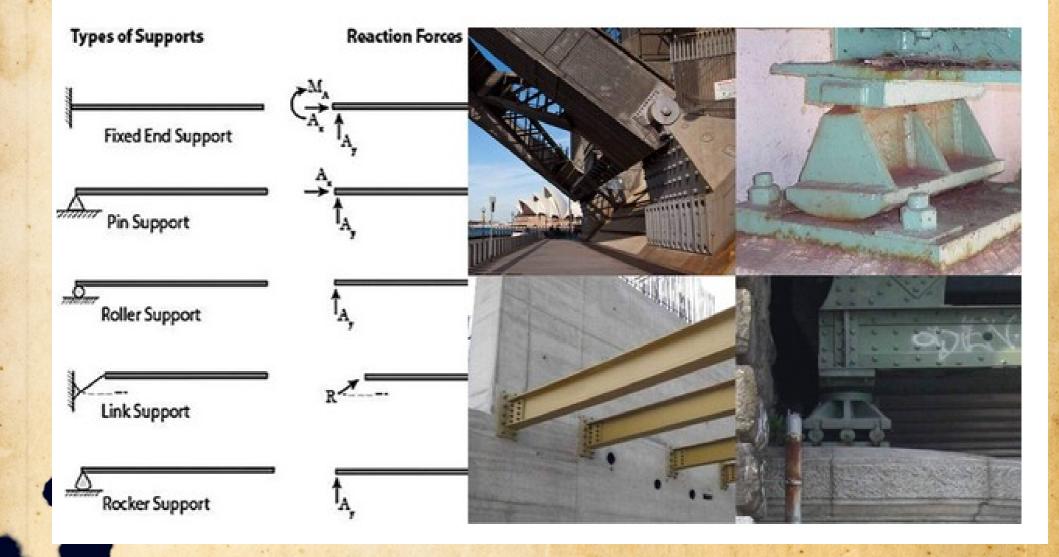
The basic methods of statics

• Consider the structure shown in Fig.1.1, which was designed to support a *30-kN* load.



- It consists of a boom AB with a 30 × 50 mm rectangular cross section and of rod BC with a 20-mm-diameter circular cross section.
- The boom and the rod are connected by a pin at *B* and are supported by pins and brackets at *A* and *C* respectively.

Support conditions



Step 1: free-body diagram

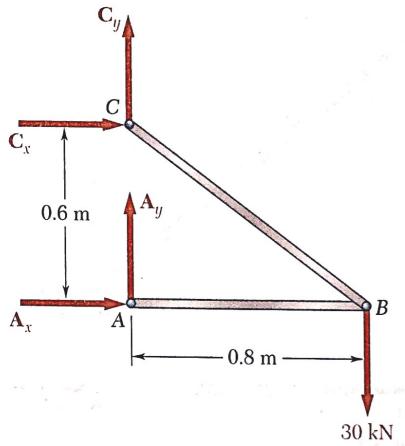
• Free-body diagram

Throughout the text *free-body diagrams* are used to determine external or internal forces.

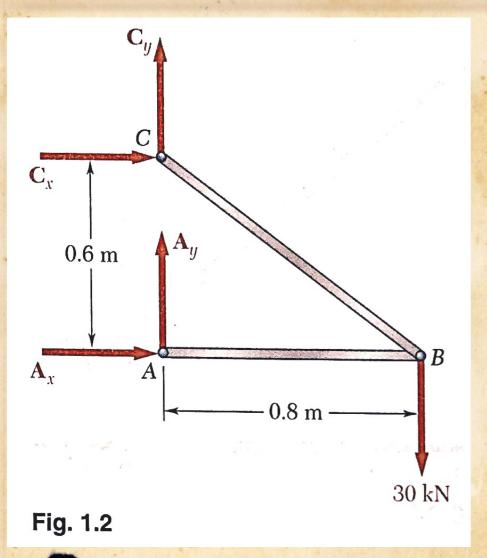
The use of *'picture equations'* will also help the students understand the superposition of loadings and the resulting stresses and deformations.

Draw a Free-body diagram

• Free-body diagram of the structure by detaching it from its supports at *A* and *C*, and showing the reactions that these supports exert on the structure (*Fig.1.2*).



- Note that the sketch of the structure has been simplified by omitting all <u>unnecessary</u> <u>details.</u>
- Many of you may have recognized at this point that *AB* and *BC* are <u>two-force</u> <u>members</u>.



 For those of you who have not, we will pursue our analysis, ignoring that fact and assuming that the directions of the reactions at *A* and *C* are unknown.

 Each of these reactions, therefore, will be represented by two components, *A_x* and *A_y* at *A*, and *C_x* and *C_y* at *C*.

Step 2: Solve equations to get reactions

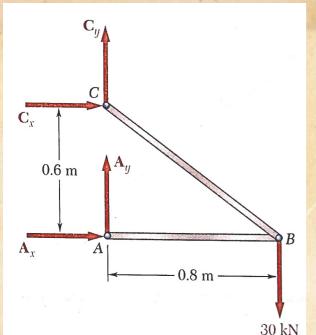


Fig. 1.2

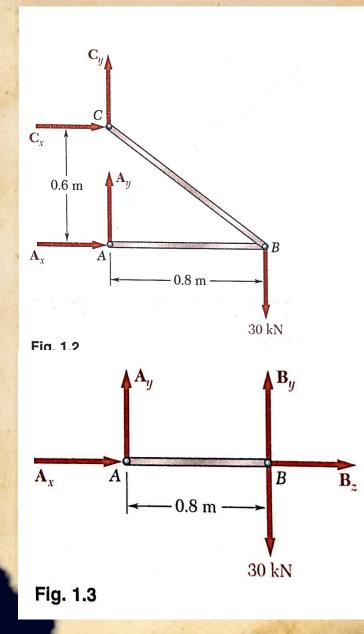
- · Moment
- · Horizontal force
- · Vertical force

$$+ \int \Sigma M_{C} = 0; \quad A_{x}(0.6 \text{ m}) - (30 \text{ kN})(0.8 \text{ m}) = 0 A_{x} = +40 \text{ kN}$$
(1.1)
$$+ \sum F_{x} = 0; \quad A_{x} + C_{x} = 0 C_{x} = -A_{x} \quad C_{x} = -40 \text{ kN}$$
(1.2)
$$+ \sum F_{y} = 0; \quad A_{y} + C_{y} - 30 \text{ kN} = 0 A_{y} + C_{y} = +30 \text{ kN}$$
(1.3)

· A_y and C_y are still unknown \mathbf{C}_{y} C_x =-40kN $_C$ \mathbf{C}_{x} \mathbf{A}_{u} 0.6 m $\mathbf{\hat{P}}B$ $A_x = 40 \text{kN} A$ 0.8 m 30 kN Fig. 1.2

· A_y and C_y are still unknown \mathbf{C}_{y} C_x=40kN \mathbf{A}_{y} 0.6 m $\mathbf{\hat{P}}B$ $A_x = 40 \text{kN} A$ 0.8 m 30 kN Fig. 1.2

Step 3: free-body diagram 2



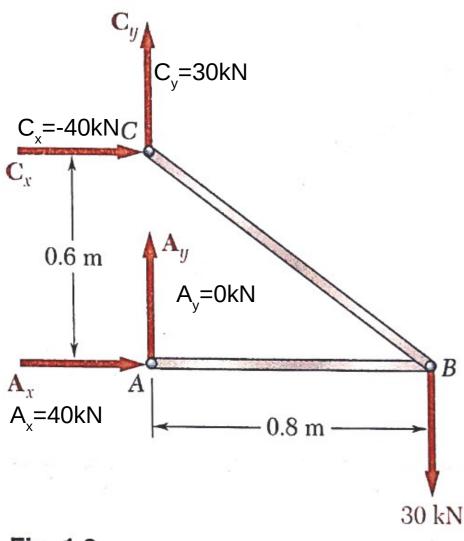
- There are only *3 equations* to solve reactions for one free-body diagram.
- Thus, it should be now dismembered the structure.
- Considering the free-body diagram of the *boom AB* (see in Fig.1.3), then we can use three equations again and write this:

$$+ \sum M_B = 0;$$

$$-A_y(0.8 \text{ m}) = 0$$

$$A_y = 0 \qquad (1.4)$$

Summary of all reactions.

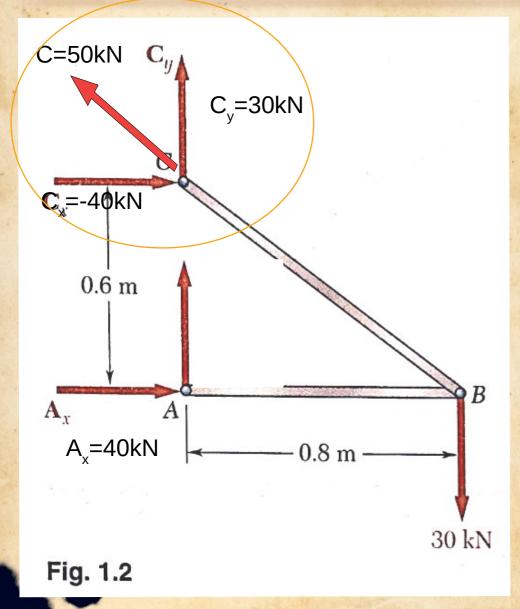


• Back to equation 1.3 $A_y + C_y = +30 \text{ kN}$

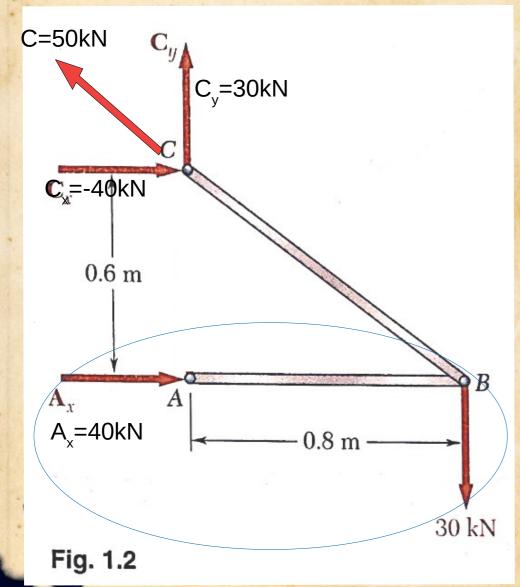
- Now **A**_y is **0**, thus **C**_y is **30** *k***N**.
- All reactions are found on this structure!

Fig. 1.2

Internal forces (member force)



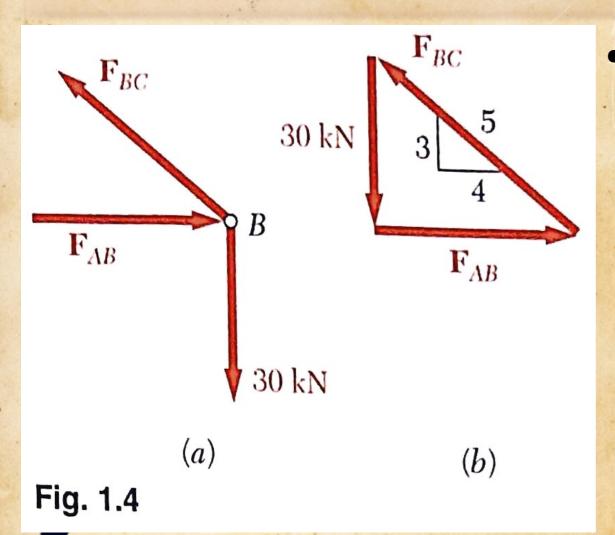
 Observing that the components C_x and C_y of the reaction at *C* are, respectively, proportional to the horizontal and vertical components of the distance from *B* to *C*, it is concluded that the reaction at C = 50 kN, is directed along the axis of the rod **BC**, and causes tension in that member.



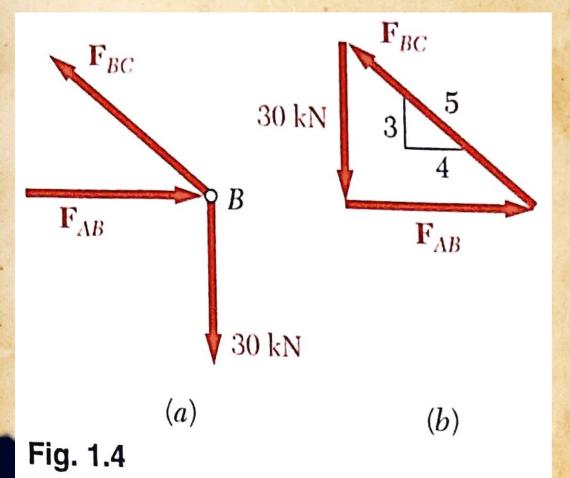
 At boom <u>AB</u>, reaction *A_x* is directed along the axis of this member and causes <u>compression</u> in that member.

Another solution

- These results could have been anticipated by recognizing that *AB* and *BC* are *two-force members*, i.e., members that are subjected to forces at only two points, these points being *A* and *B* for member *AB*, and *B* and *C* for member *BC*.
- Indeed, for <u>a two-force member</u> the lines of action of the resultants of the forces acting at each of the two points are *equal and opposite* and pass through both points.



• See this *Fig.1.4*, using this property, it could have been obtained a simpler solution by considering the freebody diagram of pin B. (called 'method of joints').



 The forces on pin *B* and the forces *F*_{AB} and *F*_{BC} exerted, respectively, by members *AB* and *BC*, and the *30-kN* load (*Fig.1.4a*).

• It can be expressed that pin **B** is in equilibrium by drawing the corresponding force triangle (*Fig. 1.4b*).

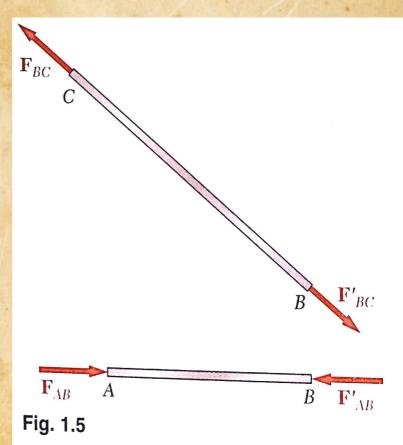
- Since the force F_{BC} is directed along member BC, its slope is the same as that of BC, namely, ³/₄.
- Therefore, it can be written the proportion;

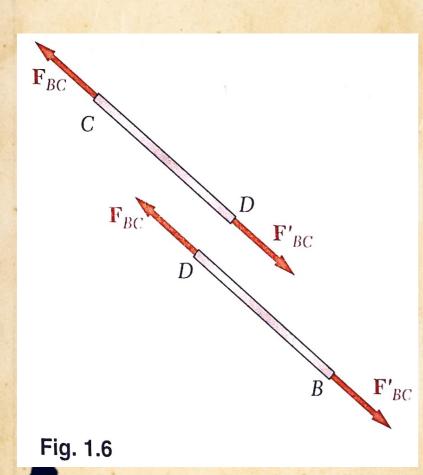
$$\frac{F_{AB}}{4} = \frac{F_{BC}}{5} = \frac{30 \text{ kN}}{3}$$

• From which it could be obtained

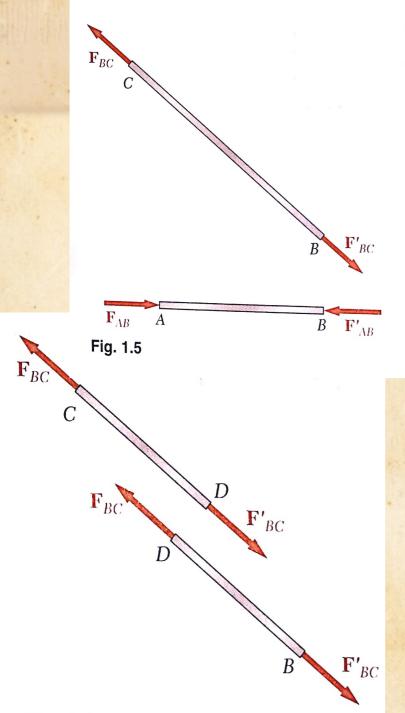
$$F_{AB} = 40 \text{ kN}$$
 $F_{BC} = 50 \text{ kN}$

- The forces F'_{AB} and F'_{BC} exerted by pin B, respectively, on boom AB and rod BC are equal and opposite to F_{AB} and \underline{F}_{BC} (see in *Fig.1.5*).
- Knowing the forces at the ends of each of the members, it can now be determined the internal forces in these members.





- Passing a section at some arbitrary point *D* of rod *BC*, it is obtained two portions *BD* and *CD* (*Fig.1.6*).
- Since <u>50-kN forces</u> must be applied at **D** to both portions of the rod to keep them in equilibrium, it is concluded that an internal force of <u>50-kN</u> is produced in rod **BC** when a <u>30-kN</u> load is applied at **B**.



- It would be further checked from the directions of the forces *F_{BC}* and *F'_{BC}* in *Fig. 1.6* that the rod is in tension.
- A similar procedure would enable us to determine that the internal force in boom *AB* is 40 kN and that the boom is in compression.