ケーブル腐食を考慮した斜張橋における静的・動的連鎖崩壊解析

環境構造工学分野 8021807 角田晴輝

--背景・目的--

吊り形式橋梁における橋梁ケーブル

- 多数の亜鉛めっき鋼線
 主要部材としての役割
- 防錆・防食処理

・ケーブル腐食に
 関する研究が少ない

ケーブル腐食による破断・崩壊事例

- ・台湾の南方澳大橋(2019.3)
- ・原田橋 (2012.4)
- ·秋田県 雪沢大橋 (2011.6)

※国交省:引張材を有する道路橋の損傷例(2006)より抜粋

背景と目的

ケーブルの腐食・破断に対する予防的維持管理

- ・長大橋:崩壊した際のリスク大
- ・安全性の評価,崩壊の対策
- ・吊り形式橋梁の長寿命化

- ◆ 特定のケーブルが破断した際の連鎖崩壊挙動の再現
- ◆ 腐食を考慮した斜張橋においてケーブルが破断した場合の 連鎖崩壊形態や動的応答を明らかにする

部材断面

斜張橋一般図

主桁断面

橋梁形式	1面吊り3径間連続鋼斜張橋	橋長	540m
主桁	鋼製箱桁断面		SM400
主塔	鋼製箱桁断面	材質	SM490
ケーブル	PWS(平行線ケーブル)		ST1570

数値解析モデル

Δ

※ 解析には汎用FEM解析ソフトウェア Marc Mentat 2021 を使用

常時設計荷重による断面照査

モデル橋の照査

ケーブル腐食のモデル化

※三田村ら:橋梁用ケーブルの最近の話題と展望(1992)より抜粋

Pr : ケーブルプレストレス D : 死荷重 CW : カウンターウェイト L : 活荷重

ケーブル**健全時**の動的応答

① 健全時 : $\sigma_p = 1570$ MPa $\epsilon_b = 0.04$

ケーブル腐食時の動的応答

② 腐食時 : $\sigma_p = 628MPa$ $\epsilon_b = 0.008$

ケーブル腐食時の動的応答

② 腐食時 : σ_p = 628MPa ε_b=0.008

一連鎖崩壊過程一

C1が破断すると, C3,C4,C2,C5の順で破断ひずみに到達し, 左径間側すべてのケーブルが破断する. その直後, C4付近の主桁 に塑性ヒンジが形成され崩壊に至った.

ケーブル破断箇所の影響

- C2~C6, C10~C14が1本破断すると 橋全体が連鎖崩壊に至る.
- C7,C8,C9(主塔付近)が1本破断しても 連鎖崩壊に至らない

他のケーブルに比べ初期ケーブル張力が小

破断するケーブルによって連鎖崩壊 挙動が異なる

動的増幅率 (DAF) と 荷重再分配率 (LRR)

T:ケーブル張力 DAF (Dynamic Amplification Factor) LRR (Load Redistribution Rate)

ケーブル健全時の DAF・LRR

海外の設計基準 (DAF = 2.0) DAF:動的増幅率

Td:動的

Ts:静的

Cable	DAF	LRR
C1	-	-
C2	1.77	1.39
C3	1.80	1.21
C4	1.85	1.08
C5	1.50	0.99

Ti:初期

-C1, C2同時に破断した際の応答値-

動的応答値 (251.31s)

Cable	DAF	LRR
C1	-	-
C2	-	-
C3	1.80	1.21
C4	1.85	1.08
C5	1.50	0.99

ケーブル腐食時の DAF・LRR

海外の設計基準 (DAF = 2.0) DAF:動的増幅率

C1破断→ C3,C4,C2の順で破断→ 崩壊	Ì
	J

動的応答値 (254.55s)

Cable	DAF	LRR
C2	1.15	1.21
C3	1.81	1.16
C4	1.00	1.12

動的応答値	(254.61s)
-------	-----------

Cable	DAF	LRR
C2	1.83	1.21
C3	-	-
C4	6.35	1.10
C5	1.00	1.13

健全・2本同時に破断 → 1.8程度 腐食・連鎖的に破断 → 6.3 動的増幅率は大きくなる

まとめ

<u>腐食を考慮しケーブルが破断した場合の連鎖崩壊挙動の再現</u>

