ケーブル腐食を考慮した斜張橋における静的・動的連鎖崩壊解析

1. はじめに

我が国では、1960年に最初の斜張橋が建設されて以降、多数の斜張橋が建設されてきた.しかし近年、吊り 形式橋梁におけるケーブル腐食が深刻な問題となって おり、ケーブルを構成する亜鉛めっき鋼線が腐食・破断 する事例が国内外を問わず報告されている¹⁾.

また,2019年10月台湾北東部にて生じた台湾南方澳 大橋の落橋事故は,連鎖崩壊の典型的な事例である²⁾. 腐食によりスパン中央部の1本のケーブルが破断した 後,他のケーブルが次々と破断し,アーチリブが崩壊し て落橋に至るという,いわゆる連鎖崩壊が発生した.こ うした連鎖崩壊の問題は,主に建築物において長年研 究されてきたが,橋梁を対象とした連鎖崩壊に関する 研究は一部の研究者の間でしか行われていない.また, 吊り形式橋梁におけるケーブルの腐食・破断に対する 予防的維持管理が必要不可欠であるが,依然として効 果的な対策が確立されていないのが現状である.

そこで本研究では、ケーブルの応力ひずみ関係にて 破断ひずみに到達後、応力を除荷する手法によりケー ブルの連鎖破断挙動を再現する新たな動的解析手法を 提案し、斜張橋においてケーブルが破断した際の動的 応答について検討する.また、ケーブル腐食を応力ひず み関係の降伏応力および破断ひずみを低減させること によってモデル化し、ケーブル腐食を考慮した場合の 崩壊挙動について検討した.さらにケーブルが破断し た際の動的増幅率や荷重再分配率についての評価を行 い、本手法の優位性や斜張橋においてケーブルが破断 した際の連鎖崩壊挙動に関する考察を行う.

2. 斜張橋モデル

2.1 対象橋梁の諸元

検討の対象とする斜張橋モデルは、1面吊り3径間連 続鋼斜張橋(道路橋)を対象とした.中央径間長を300m とし、主桁断面は鋼製箱桁断面とした.総幅員は22.0m, 上下各2車線の道路橋、ウェブ高さは3.0m,

床板は鋼床版を想定した. 主塔の断面は鋼製箱桁断面 とした. 主桁の鋼種はSM400(降伏応力235MPa),主塔 はSM490(降伏応力315MPa)である. ケーブルには, ST1570を用い,ケーブルを構成する鋼線の引張強度は

環境構造工学分野 8021807 角田 晴輝 指導教員 後藤文彦 青木由香利

1570MPaとした. 側径間に7本のケーブル (C1-C7), 主径間の左半分に7本のケーブル (C8-C14)のケーブ ルを配置した. 主径間の右半分 (C15-C21)および右径 間 (C22-C28)は,左右対称のケーブルを配置した.

2.2 数値解析モデル

斜張橋の数値解析モデルを図1に示す. 主桁, 主 塔, ケーブルすべてはり要素でモデル化した. 主桁は両 端および主塔横梁部で鉛直方向に支持されるが, 橋軸 方向には自由とした. 主塔は, 下端で固定支持した.

主塔主桁,主塔はファイバー要素に分割し,鋼板は 板厚方向に4分割,幅方向に8分割した.また,主桁 は、1mにつき1要素となるように部材軸方向に要素分 割し、ケーブルはすべて1本1要素とする.ケーブル の両端部はピン結合となるように設定している.実際 のケーブルでは多数の鋼線を平行に束ねるあるいはよ り合わせているが、解析上は円形断面の鋼棒でモデル 化した.その際、ケーブルを構成する鋼線の断面積と鋼 棒モデルの断面積は一致させた.材料の応力ひずみ関 係は、鋼板はバイリニア、ケーブルはトリリニアとした (図3).本研究の解析には、汎用 FEM 解析ソフトウェ ア Marc Mentat 2021.4 を用いた.

2.3 常時設計荷重

3次元の斜張橋モデルを作成し,常時設計荷重により 生ずる断面力を構造解析により求めた.常時設計荷重 を図4に示す.

橋軸方向単位長さあたりの死荷重(D)は、鋼桁重量 (69.7kN/m),地覆・高欄(24.5kN/m),アスファルト 舗装(28.4kN/m)である.また、端支点の負反力を抑制 するため、側径間にはカウンターウエイト(CW,60kN/m) を載荷した.死荷重作用時に主桁および主塔の曲げモ ーメントが平滑化かつ最小になるようにケーブル・プ レストレス(Pr)を導入した.活荷重(L)は道路橋示 方書のB活荷重を準用することとし、スパン中央部に主 載荷荷重を載荷することとした.すなわち、集中荷重pi

(10kN/m²) を長さ10mおよび幅員5.5m に作用させる. ただし,その他の部分は5.0kN/m²とする. さらに,分布 荷重 p_2 (3.0kN/m²) を幅員5.5mに作用させる. ただし, その他の部分は1.5 kN/m²とする. なお,集中荷重はス パン中央に,等分布荷重は全径間に載荷した.

主桁のスパン中央は正の曲げモーメントが支配的で ある.主塔の基部においては圧縮軸力と曲げモーメン トが発生する.これに伴う曲げ応力と軸圧縮応力をそ れぞれの許容応力で除した値を足し合わせた照査値が 1.0以下となることを確認した.

3. 解析手法

本解析では、ニューマーク β 法を用いた時刻歴応答 解析を実施し、ケーブル破断による連鎖崩壊挙動の再 現を試みた.減衰定数は h=0.0032、全体の解析時間は 300s とし、タイムステップは 0.01s とした.

ケーブルの破断挙動を再現した方法を以下に示す. はじめに,解析モデルから破断させるケーブル要素を 事前に取り除く.破断モデルのケーブル端部の節点 に、初期ケーブル張力を載荷する.この状態は、ケー ブルプレストレスによる引張張力が載荷されている状 態を再現している.続いて、載荷したケーブル張力を $\Delta t s$ でゼロとする.ここで図6にケーブル破断時間 (Δt)を変化させたときの主桁中央部の鉛直変位時刻歴 を示している.この図より、 Δt が3s,5sのときは破断 時に生じる衝撃力が小さくなっている.一方で Δt を 小さくすると、衝撃力が十分発揮されることがわかっ た. $\Delta t=0.0.1$ 以下については、ほとんど応答に変化が 見られなかったため、本研究では $\Delta t = 0.01s$ として解析 した.載荷したケーブル張力を $\Delta t = 0.01s$ でゼロとする ことによって、ケーブルが瞬間的に破断する挙動を再 現した(図5(b)).

3.2 ケーブル腐食のモデル化

ケーブルを構成する健全な鋼線の伸びは 4.0%を有するが, 腐食により鋼線の伸びが低下することが知られている.中村 ら¹⁾によれば,腐食した亜鉛めっき鋼線の伸びは,健全鋼線 の半分程度まで低下する.さらに,鋼線を束ねたケーブルで は鋼線間の接触や両端のソケット部の影響のため,腐食ケー ブルの伸びはさらに低下する.

三田村ら³は、腐食した平行線ストランドの引張試験 を実施し、腐食ケーブルの伸びが健全時の1/4 程度まで 低下することを報告した.これらを考慮し本研究では、 ケーブル構成則の降伏応力および破断ひずみを低下させる ことにより、ケーブル腐食をモデル化した.ケーブル健全時 および腐食時の応力ひずみ関係を図7に示す.腐食時の降 伏応力は健全時の破断強度40%、すなわち628MPaとし、 破断ひずみは0.008となるように設定した.

また破断ひずみ到達後,応力をゼロ(ゼロに非常に近い値とする)と設定し、これを全てのケーブルに適用させることで、1本目のケーブルを破断させた後、他のケ ーブルが連鎖的に破断する挙動を再現した.

3.3 応力除荷法

本手法は、応力ひずみ関係にて破断ひずみ到達後、応 力をゼロとすることによりケーブルの連鎖破断挙動を 再現した.よって本手法を応力除荷法と呼ぶ.本解析手 法の利点は、ケーブルが破断した後の連鎖崩壊挙動を 一度の解析で再現でき、静的解析と比べてより実挙動 に近い連鎖崩壊挙動を再現可能である点である.連鎖 崩壊解析の解析手順を以下に示す(図8).

STEP1: 図8(a)に示すような,ケーブル破断前のモデ ルを初期モデルとする.初期モデルに対し,設計荷重 (Pr+D+CW+L)を載荷する(図8(b)).一度に荷重を載荷 するとモデル橋が振動するため,解析時間200sかけ て載荷する.この解析結果から,C1のケーブル張力の 時刻歴を取得する(図8(c)).

STEP2:続いて,橋梁モデルから対象ケーブル(例:C1) を取り除き,このモデルを破断モデルと呼ぶ(図8(d)). ここで,図8(f)に示すようにSTEP1で取得したケーブ ル張力(図8(c))が時刻250sにゼロとなるように設定 し,ケーブル定着部の節点(主桁および主塔部)に作用 させる.これと同時に設計荷重を破断モデルに載荷す る.これにより1本目のケーブルが時刻250sで破断し たことを再現する.またケーブル健全時および腐食時 の応力ひずみ関係をそれぞれ適用させ(図8(g)),1本 ケーブルを破断させた後,他のケーブルや橋梁全体の 動的挙動を解析する. 本研究では,斜張橋モデルが終局に至った時点(部材断 面が全断面降伏に至った時点)で,橋全体が崩壊したと する.

4. 解析結果

4.1 健全モデルにおける C1 破断時の動的応答

図7に示す健全時の応力ひずみ関係をすべてのケー ブルに適用させた場合の解析を行う.これを健全モデ ルと呼ぶ.ここではC1(アンカーケーブル)を時刻 250sで破断させた場合の動的応答について検討した.

C1 が 250s で破断すると、それに伴い動的な衝撃力 が発生し、他のケーブルに応力が分配される.しかし C1 が 1 本破断しても、他のケーブルは破断ひずみに 到達することなく、全体崩壊にも至らなかった. ま た、ケーブルを2本同時(C1-C2) に破断させた場合も 同様の結果となった.

図 8 連鎖崩壊解析手法(例:C1 破断時)

4.2 腐食モデルにおける C1, C14 破断時の動的応答

図 10 C1 破断時の連鎖崩壊過程 (Scale factor:5x)

ここでは、図7に示す腐食時の応力ひずみ関係をす べてのケーブルに適用させた場合の解析を行う.これ を腐食モデルと呼ぶ.健全モデルと同様にC1を破断さ せた場合の動的応答について検討した.

C1 が破断した場合の連鎖崩壊過程を以下に示す(図 10).腐食モデルにおいて,C1 を破断させると(図 10(b)), C3,C4,C2,C5,C6,C7 の順で破断ひずみに到達し(図 10(c)),左径間側すべてのケーブルが破断した直後に, C4 付近の主桁断面に塑性ヒンジが形成され崩壊に至る (図 10(d))という連鎖崩壊挙動を生じることがわかった.

また図 11 より, 主桁中央部は 250s で C1 が破断した 後, しばらく振動した後, 255s 付近で鉛直変位が急増 している. 次に図 12 に C2~C7 のひずみの時刻歴応答 (時刻 254.4s~255.0s)を示す. これより C3,C4 が 254.56s に破断ひずみに達し破断し, その後 C2 と C5 が 254.71s に破断した. その後, C6,C7 も破断する (C6:254.77s, C7:254.99s). さらに図 13 に C4 付近の主桁断面の上縁・ 下縁・中立軸付近における応力の時刻歴応答を示す. こ れより, 左径間側のケーブルが全て破断ひずみに達し た時刻 254.8 付近で主桁断面が中立軸を境に引張, 圧縮 降伏し塑性ヒンジが形成され, 橋全体が崩壊した.

続いて, Cl4 (センターケーブル) を意図的に破断さ せた場合の応答について検討した.

C1を破断させた場合と同様に,250s で C14 を破断 させた後,主桁が振動し255s あたりで変位が急増する. その間,254.48s に C12,続いて C13,C11 が破断ひずみ に達し,破断した.さらに C10~C8 が破断した.中央 径間左側のすべてのケーブルが破断ひずみに達した時 刻で,C12 付近の主桁断面が中立軸を境に引張,圧縮降 伏し塑性ヒンジが形成され,橋全体が崩壊した.

図14 斜張橋モデルのケーブル配置図

破断ケーブル	崩壊	塑性ヒンジ形成箇所
C1	0	
C2	0	
C3	0	
C4	0	0
C5	0	塑性ヒンジ (C4 付近)
C6	0	
C7	×	—
C8	×	-
C9	×	-
C10	0	
C11	0	御歴まれ
C12	0	型性L99 (C12付近)
C13	0	0
C14	0	-

表1 ケーブル破断箇所ごとの応答

C1およびC14以外のケーブルを破断させた場合の応 答について検討する.

得られた結果を表 1 にまとめた.ケーブルの腐食を 考慮し, C2~C6 を 1 本ずつ破断させてそれぞれ解析す ると C1 と同様の連鎖崩壊挙動に至ることがわかった. すなわち,破断ケーブル付近のケーブルから順次破断 ひずみに到達し,連鎖的に破断することで,左径間側の 主桁のたわみが大きくなった.このとき C4 付近の主桁 断面が中立軸を境に,圧縮および引張降伏し,塑性ヒン ジが形成され,全体崩壊に至った.

一方で, C7,C8,C9 を1本破断させても,全体崩壊に は至らないことがわかった.これらは主塔付近のケー ブルであり,他のケーブルに比べ設計段階で初期張力 が小さい.そのため,破断しても他のケーブルへ分配さ れる張力は限定的であり,橋梁が連鎖崩壊するには至 らなかったと考えられる.

次に C10~C13 を破断させると, C14 を破断させた場 合と同様の連鎖崩壊挙動を示すことがわかった. すな わち C10-C13 が破断した際は,破断ケーブル付近のケ ーブルから,破断ひずみに順次達していき, C12 付近の 主桁断面に塑性ヒンジが形成され崩壊に至った.

5. 動的増幅率と荷重再分配率

ケーブルの破断は、衝撃荷重を生じさせる動的な挙 動であり、ケーブルが担っていた張力が分配され、隣接 するケーブルに大きな応力を発生させる.そこで、ケー ブルが破断した際の動的増幅率および荷重再分配率に ついて検討し、連鎖崩壊挙動について考察した.

本研究では,動的増幅率を DAF (Dynamic Amplificat ion Factor),荷重再分配率を LRR (Load Redistribution Rate)で表す. DAF および LRR を式(1), (2) によって 求める.

$$DAF = \frac{T_d - T_i}{T_s - T_i} \tag{1}$$

$$LRR = \frac{T_s}{T_i} \tag{2}$$

ここで、Tiは図15(a)に示す初期モデルすなわちケー ブル破断前モデルの静的応答値、Tsは破断ケーブルを 除いた構造系の静的応答値(図15(b))、そしてTdは図15 (b)に示すようなケーブル破断モデルの動的応答値をそ れぞれ示している.

DAF は図 16 に示す,動的応答値の最大値から初期値 を引いた値と,静的応答値から初期値を引いた値の比 であり,LRR は図 16 に示す静的応答値と初期値の比で ある.

健全モデルと腐食モデルにおいて C1 を破断させた 場合の,各ケーブルの応答値と DAF・LRR を算出し, 図 17 にまとめた.ケーブル健全時(図 17(a))において 1 本または 2 本同時に破断させた場合の DAF は約 1.8 となることがわかる.一方で,腐食を考慮し連鎖的にケ ーブルが破断した場合(図 17(b),(c))の DAF は最大で 6.3 程度となり,非常に大きな値が算出されることがわ かった.

(b) ケーブル破断モデル(静的・動的応答値)

💥 Ti (MN), Td (MN), Ts (MN)

(a) ケーブル健全時に C1-C2 同時に破断した場合

💥 Ti (MN), Td (MN), Ts (MN)

(b) ケーブル腐食時に C1 が破断した場合

💥 Ti (MN), Td (MN), Ts (MN)

(c) ケーブル腐食時に C1 に続き C2 が破断した場合

図17 ケーブル健全時および腐食時のDAF・LRR

6. まとめ

ケーブルが連鎖的に破断する挙動をケーブル応力を 除荷する方法によって再現し、動的解析により橋梁全 体の連鎖崩壊挙動について検討した.さらに本研究で は、ケーブル腐食を応力ひずみ関係の降伏応力および 破断ひずみを低減させることによって再現した.本研 究で得られた結論は以下のとおりである.

- 本手法によって、ケーブル腐食が進行している斜張 橋の特定のケーブルを1本破断させた場合、他のケ ーブルが次々と連鎖的に破断し最終的には橋全体 が崩壊するという連鎖崩壊挙動を再現できること を確認した。
- 2) ケーブルが健全である場合には、ケーブルが2本同時に破断しても、全体崩壊には至らない.
- 3) ケーブル腐食を考慮した場合、C1を破断させると、 隣接する C3,C4,C2,C5 の順で破断ひずみに到達し、 左径間側のケーブルが全て破断した後、C4 付近の 主桁断面に中立軸を境に引張・圧縮降伏し塑性ヒン ジが形成され崩壊する.

さらに、ケーブル破断箇所をパラメータとして、ケー ブルを破断させた場合の連鎖崩壊挙動について検討し た.

4) C2~C6を1本破断させると、C1と同様の連鎖崩壊 挙動に至ることを確認し、最終的にはC4付近の主 桁断面に塑性ヒンジが形成されることがわかった. またC10~C13を1本破断させると、C12付近の主 桁断面に塑性ヒンジが形成された.一方で、C7~C9 が破断した場合は、塑性ヒンジは形成されず、連鎖 崩壊挙動は確認されなかった.

また動的増幅率(DAF) や荷重再分配率(LRR)につい ても検討し,以下の知見を得た.

5) ケーブル健全時に2本同時に破断した直後の隣接 するケーブル張力のDAFは1.8程度となるが、腐 食を考慮し連鎖的にケーブルが破断した直後の DAFは最大で約6.3となることがわかった。

本研究で得られた成果は、斜張橋の安全性の評価や 崩壊の対策、今後増加すると予想される老朽化した吊 り形式橋梁の維持管理・長寿命化に貢献すると思われ る.

参考文献

- 鈴村恵太,中村俊一,樽井敏三:腐食した亜鉛め っき鋼線の疲労特性,土木学会論文集,pp.614-622,2006.
- Shunichi Nakamura, Kazuhiro Miyachi: Ultimate Strength and Chain-Reaction Failure of Hangers in Tied-ArchBridges, *SEI*, *No.1*, 136-146, 2020.2.
- 三田村武,中井博,渡邊英一,杉井謙一:橋梁用 ケーブルの最近の話題と展望,土木学会論文 集, No. 444, VI-16, pp. 97-106, 1992.