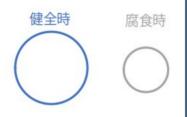
ケーブル腐食が固有振動に与える影響の検討

研究背景・目的

◆ 斜張橋

塔から斜めに張られた複数の ケーブルで吊り支える構造の橋


外力に抵抗する重要な部材

※日経クロステックより抜粋

◆ 一様腐食

先行研究では,ケーブルを一要素で解析しているので,断面積減少は一様腐食になっていた

一様腐食

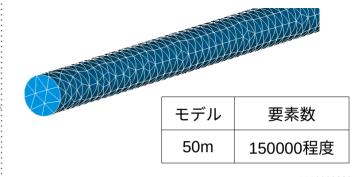
7020620 山本紘生

◆ ケーブル腐食

- 引張強度
- 伸び
- 疲労強度

実際にケーブルの腐食が原因の事故事例もある

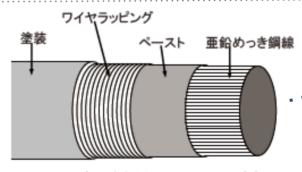
ケーブルの腐食に関する研究が少ない...


今回の研究では...

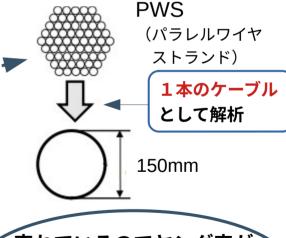
- 腐食による固有振動の影響を数値解析的に調査した
- 引張強度への影響を腐食の位置と大きさによって 確認する
 - **腐食の位置と大きさが固有振動に与える影響を検討した**

健全時メッシュモデル

断面


50m

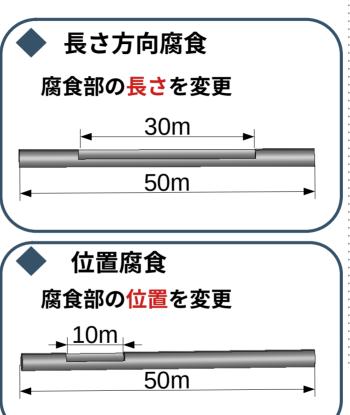
断面

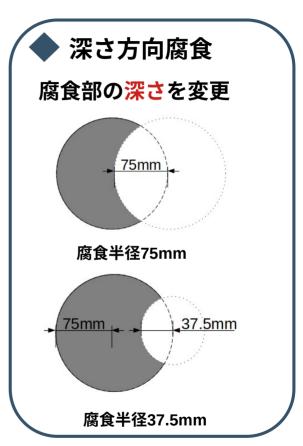


150mm

ケーブル材質 **ST1570材** (平行線ストランドケーブル)

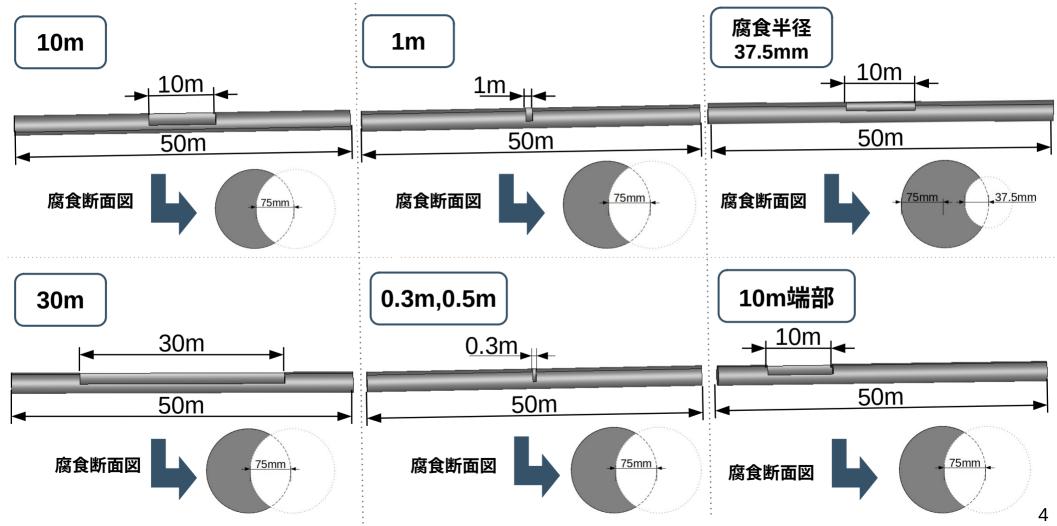
ヤング率	195GPa
ポアソン比	0.3
密度	7800kg/m ³

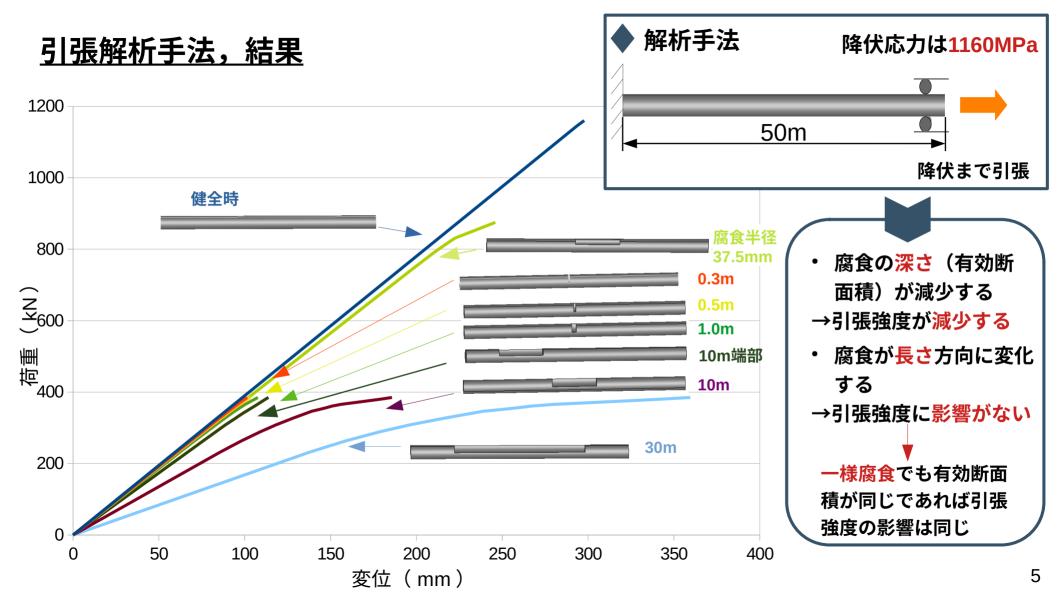


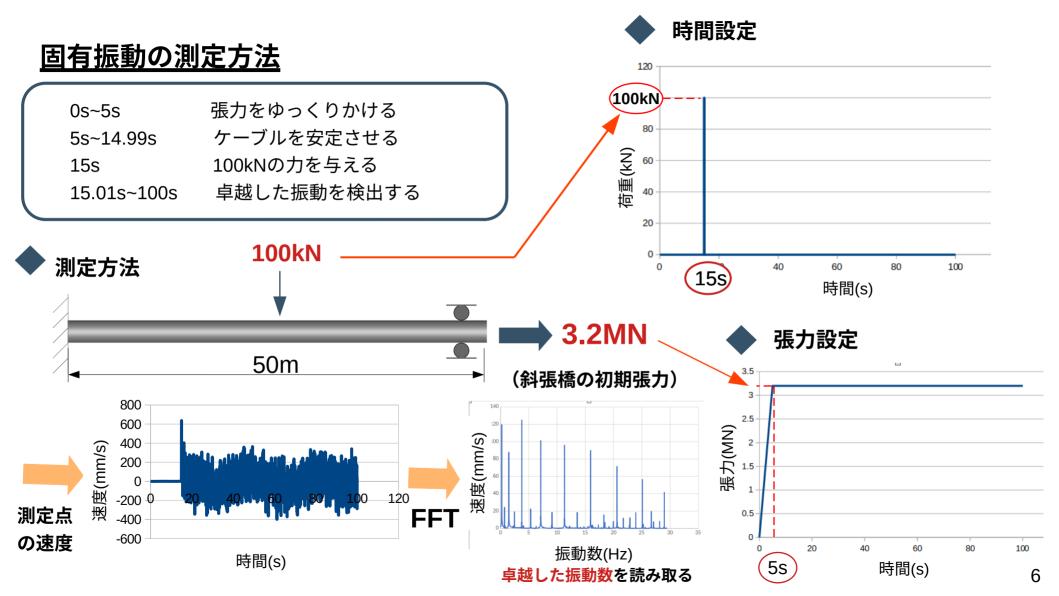

束ねているのでヤング率が 鋼材(ヤング率206GPa) よりも小さい

腐食再現方法

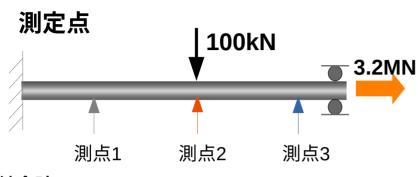
腐食の位置,長さ,深さの影響を検討

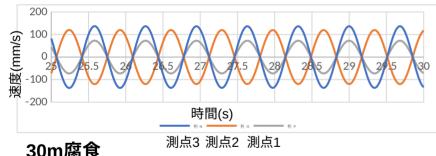






健全時と腐食時を引張解析と振動解析を用いて解析する


腐食再現モデル



振動解析結果

健全時

	30川) 人
展	300 200 100 0 -100 ² 5 25.5 26 26 5 27 27.5 28 28.5 29 29.5 30 -200 -300
	時間(s)
	—— № —— № —— № —— № —— № —— № —— № ——
	測点3 測点2 測点1

推定3次モード

モデル	振動数(Hz)	健全時と誤差(%)
健全時	1.465	-
0.3m	1.477	0.82
0.5m	1.489	1.64
1.0m	1.489	1.64
10m	1.440	-1.71
30m	1.331	-9.15
腐食半径 0.0375m	1.575	7.51
10m端部	1.477	0.82

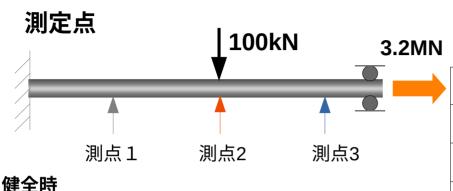
弦の理論式

$$f = \frac{n}{2\ell} \sqrt{\frac{S}{\rho}}$$

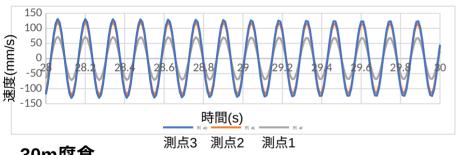
f 振動数 [Hz]

n 倍振動

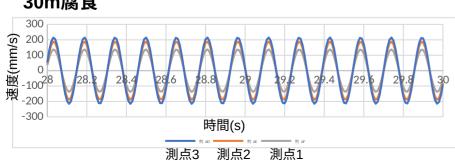
l 長さ [m]

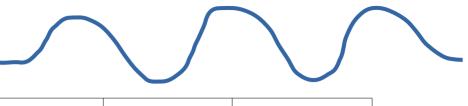

S 張力 [N]

ρ 線密度 [kg/m]



0.3m~10mの腐食では固有振動数は±2% 30m腐食では9.1% → 長さ46%↑, 密度23%↓


振動解析結果



30m腐食

推定5次モード

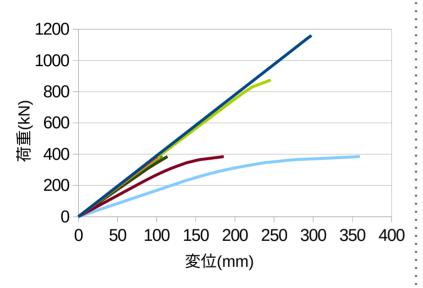
モデル	振動数(Hz)	健全時との誤差(%)
健全時	7.117	-
0.3m	7.200	1.17
0.5m	7.275	2.22
1.0m	7.288	2.40
10m	7.110	-0.10
30m	6.445	-9.44
腐食半径 37.5mm	7.568	6.33
10m端部	7.568	6.33

弦の理論式

$$f = \frac{n}{2\ell} \sqrt{\frac{S}{\rho}}$$

倍振動

長さ [m]


線密度 [kg/m]

0.3m~10mの腐食では固有振動数は±2.5% 30m腐食では9.4%→長さと密度の変化の影響が大きい₈

まとめ、今後の課題

引張解析

- 大きさにかかわらず、腐食する と引張強度に影響があった
- ・ 引張強度は深さ方向(有効断面積)の腐食によって減少する

振動解析

モデル	振動数(Hz)	健全時と誤差(%)
健全時	1.465	1-11
0.3m	1.477	-0.82
0.5m	1.489	-1.64
1.0m	1.489	-1.64
10m	1.440	1.71
30m	1.331	9.15
腐食半径 0.0375m	1.575	-7.51
10m端部	1.477	-0.82

- ・振動モードは 0.3m~10mの腐食では 固有振動数は±2.5%
- 30m腐食では9.4%→長さと密度の変化の 影響が大きい
- 実際に30m腐食し,長 さや密度に影響すると は考えにくい。

今後の課題

- ・ 別の腐食の再現方法の検討
- ケーブル腐食を橋梁全体に適用させ,振動数やモードへの 影響を調査する

補足資料

時刻歴応答解析設定

Timestep 0.01 直接積分法 ニューマーク法 Beta 0.25 Ganma 0.5 減衰は考慮なし

語録

ST1570被覆平行線ストランド(NEW-PWS)

プレハブストランド(PWS) 従来のワイヤロープのように素線をよりあわせず、素線を平行にたば ねたもの.これまでのワイヤロープにかわる高性能ケーブル 橋梁や建築物などの吊構造材として軽量化、高性能化されている

振動解析(10s時)変位

モデル	変位(mm)
健全時	49.34
0.3m	49.77
0.5m	50.06
1.0m	50.69
10m	59.00
30m	72.35
37.5mm	50.40
10m端部	57.64