ケーブル腐食を考慮した斜張橋における静的・動的応答解析

当面の課題

 

☐時間軸を考慮した動的応答解析

 
 
 

Marc_mentat

Model-600

主径間長600m、 900mの鋼斜張橋に関し、以下の手順に似て崩壊解析を行う。
Part 1: 常時設計荷重を満足するようなモデル橋を設計する。解析は弾性とし、断面照査は許容応力法を用いる。
Part 2: モデル橋の終局強度および崩壊形態を明らかにする。解析は弾塑性解析とする。

 

Part 1 線形解析
1. モデル橋の諸元および部材断面
主径間600mの斜張橋( Model-600)の線形解析を行う。
実橋は2面吊り斜張橋であるが、片面のみを考慮し、平面モデルとして解析する。

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M600/m01.png

 

主桁断面
UFlg. 3,000 x 25
LFlg. 3,000 x 25
2-Web 4,000 x 25
Steel Grade: SM490 (Yield stress: 315 MPa)

 

主塔断面
UFlg. 4000 x 25
MFlg. 4000 x 25
LFlg. 4000 x 25
2-Web 5000 x 25
Steel Grade: SM490Y(Yield stress: 355 MPa)

 

平行線ケーブル
ヤング係数 1.95 E5 N/mm2
材質 ST1570

3. 解析結果
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M600/m02.PNG
設計荷重載荷時の変形

4. モデル橋の諸元および部材断面
主径間900mの斜張橋( Model-900)の線形解析を行う。
実橋は2面吊り斜張橋であるが、片面のみを考慮し、平面モデルとして解析する。

 
 

ケーブル破断(ケーブル腐食を考慮)

ケーブルの腐食が進行すると孔食のみならず,広範囲にわたり鋼は腐食し、鋼断面積も減少する.
(腐食レベル3に着目し)ケーブル断面が20%減少するとして,全長に渡り一様にケーブル断面積
を減少させてケーブル破断を想定したモデルに対し,荷重を作用させ,部材ごとの応力が降伏応力に達する
か否かの照査を行った.

1)アンカーケーブル(C1)が破断したケース

(a)C1が破断

スパン中央の鉛直変位:2.105mm
隣接するC2の応力は986N/mm2,
C14の応力は502N/mm2,
主桁、主塔、ケーブルの応力すべて弾性範囲内

 
 

(b)続いてC2が破断したと想定

スパン中央の鉛直変位:2,586mm
隣接するC3の応力は1299N/mm2,
C14の応力は316N/mm2,
C3はケーブルの第1降伏点に達する.主桁,主塔,の応力は弾性範囲内.

 
 

(c)続いてC3が破断したと想定

スパン中央の鉛直変位:3,139mm
隣接するC4の応力は1581N/mm2,
C14の応力は102N/mm2,
C4はケーブルの第2降伏点の降伏応力に近い応力が算出.主塔242N/mm2, 降伏応力に達する.

 
 

ケーブル破断を考慮した静的解析

ケーブルが破断すると想定して,ケーブルを無くした構造系に衝撃荷重と設計荷重を載荷させ,部材ごとの応力が
各部材の降伏応力に達しているか否かの照査を行う.

1)アンカーケーブル(C1)が破断したケース

(a)C1が破断

スパン中央の鉛直変位:2,105mm
隣接するC2の応力は827N/mm2,
C14の応力は424N/mm2,
主桁、主塔、ケーブルの応力すべて弾性範囲内

 
 

(b)続いてC2が破断したと想定

スパン中央の鉛直変位:2,107mm
隣接するC3の応力は1094N/mm2,
C14の応力は257N/mm2,
主桁、主塔、ケーブルの応力すべて弾性範囲内

 
 

(c)続いてC3が破断したと想定

スパン中央の鉛直変位:2,620mm
隣接するC4の応力は1330N/mm2,
C14の応力は64N/mm2,
C4はケーブルの第1降伏点に達する.主桁,主塔,の応力は弾性範囲内.

 
 
 
 
 

弾塑性崩壊解析

(a)主桁を構成する鋼材は SM400、主塔を構成する鋼材は SM490Yとする。構成則は
バイリニア、初期ヤング係数は 2.0 x 105 N/mm2 とする。
σy =
245 MPa (SM400)
315 MPa (SM490)
355 MPa (SM490Y)

 
 

(b)ケーブルは ST1570の平行線ケーブルとする。構成則はトリリニア、初 期ヤング係数は 1.95 x 105 N/mm2 とする。
σy = 1160 MPa
σp = 1570 MPa
E1 = 155 GPa
E2 = 55 GPa
εy = 0.75 %
εp = 1.50 %
εb = 4.0 %

 
 

(c)主桁、主塔断面はファイバー要素に分割する

板厚方向に2分割、板幅方向は6分割 した 。
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p21.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p22.png

ケーブル部材は主桁および主塔にピン接合する。すなわち、ケーブル部材端は回転自由 とする。

 
 

(d)解析方法
最初にケーブルプレストレス(Pr)を載荷し,死荷重および活荷重 D+L)を漸増させる.すなわち,
P = Pr + k ( D + L )
である.kは荷重増加係数であり,0.01ずつモデル橋が崩壊するまで増加させる.終局
時の kを終局荷重係数 kuとする.

 
 
 

【解析結果】

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) 梁ピン結合

 
 
 
 
 
 
 
 
 
 
 
 

(2) 自由度固定(鉛直方向)

 

断面照査

断面性能を下記のように求める。

A(mm²)y(mm)Ay²(mm⁴)
UFlag11000×12132.000-1256208234752000
2-Web2500×126.000031250000000
LFlag11000×16176.0001258278531264000
Total368.000518016016000
 
 
I(断面2次モーメント)509610745739
l(有効座屈長)20000
r(断面2次半径)1177
 
 

主塔部

N=-15969kN
sn(軸応力)=-43.4N/mm²
My=-25130
sb(曲げ応力)=-69.9
sna(軸許容応力)=113.3
sba(曲げ許容応力)=140
r=(照査値)-0.809

スパン中央

N=239kN
sn(軸応力)=0.6N/mm²
My=39145
sb(曲げ応力)=108.9
sna(軸許容応力)=110
sba(曲げ許容応力)=140
r=(照査値)-0.782
 
 

断面性能を下記のように求める。

A(mm²)y(mm)Ay²(mm⁴)
UFlag3000×2266.000-2021266.911.986.000
2-Web4000×22176.0000234.666.666.667
LFlag3000×2266.0002021266.911.986.000
Total308.000768.490.638.667
 
 
I(断面2次モーメント)768.490.638.667
l(有効座屈長)54.600
r(断面2次半径)1580
 
 

主塔基部

N=-28100kN
sn(軸応力)=-91.2N/mm²
My=16642
sb(曲げ応力)=-43.8
sna(軸許容応力)=126.4
sba(曲げ許容応力)=140
r=(照査値)-1.034
 
 
 
 

Model-300 線形解析

・モデル橋の線形解析
主径間300mの斜張橋(Model-300)の線形解析
実橋は二面吊り斜張橋だが、片面のみを考慮し平面モデルとして解析する

 
 

中村先生(メモ)
節点温度
・A、B、C全てに‐100℃をかけると、A,B,Cそれぞれ2倍縮んでいる。
・片側の節点だけだと、半分の値だけしか縮まらない
・ある要素に温度応力をかけるときは、両側の節点に節点温度を与える必要がある。
→完了(2節点での温度勾配を考慮するのではないか)

弾塑性
・はりを10分割(節点)
・はり断面の確認(U領域等の設定が比率かどうか)
・ケーブルにも断面形状を与える(ケーブルが先に塑性することもある)
・ケーブルを薄くしたときの挙動(5㎜のときケーブルが先に塑性する)
・荷重の組み合わせ(荷重ケース)
→計算結果を確認

Model-300の線形解析
・主桁の断面の設定(薄肉断面梁、断面形状の設定・4つ、箱桁断面)
×シェル
・B点、E点はそれぞれ同一の節点としてもよいが、別々の節点にしてバネで繋いでもよい(鉛直かため、水平・回転緩め)
→計算結果を確認

Model-300橋の諸元
・主スパン長300m
・主桁断面は鋼製箱桁断面、幅員11m
・床版は鋼床版を想定、鋼板材質はSM400(降伏応力235MPa)
・主塔は2本で断面は長方形

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s20.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s23.png

 
 

ケーブルの断面積
・側径間に7本のケーブル(C1-C7)、主径間の左半分に7本のケーブル(C8-C14)、主径間の右半分および右側径間は左右対称のケーブルを配置
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s25.png

 
 

常時設計荷重
・橋軸方向単位長さあたりの死荷重は鋼桁鋼桁重量(69.7 kN/m),地覆・高欄(24.5 kN/m),アスファルト舗装(28.4 kN/m)
・端支点の負反力を抑制するため,側径間にはカウンターウエイト(CW, 60 kN/m)を載荷
・死荷重作用時に主桁および主塔の曲げモーメントが平滑化かつ最小になるようにケーブル・プレストレス(Pr)を導入した 
・活荷重(L)は道路橋示方書6)のB 活荷重とした.すなわち,集中荷重 p1(10 kN/m2)を10m 長さおよび幅員 
5.5m に作用させる.ただし,その他の部分は 5.0 kN/m2とする.さらに,分布荷重 p2(3.5 kN/m2)を幅員 5.5mに作用させる.
ただし,その他の部分は 5.0 kN/m2とする.なお,集中荷重はスパン中央に,等分布荷重は全径間に載荷した.
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s26.png

 

梁断面の可視化
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s21.png

 

主塔(箱桁断面)の断面作成
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s22.png

 
 

常時設計荷重による変形
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s24.png

 
 

中村先生(メモ)

 
 

【解析結果】

 
 

a) ケーブルプレストレス載荷時( Pr スパン中央の変位:+706mm (中村先生: :+706mm)
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p1.png

 
 

b) 死荷重載荷時( Dスパン中央の変位:-1,710mm (中村先生 :-1,712 mm)
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p2.png

 
 

c) カウンターウエイト載荷時( CWスパン中央の変位:+254 mm (中村先生 : +261 mm )
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p3.png

 
 

d) 集中活荷重載荷時( LP1スパン中央の変位:-491 mm (中村先生 : -491 mm )
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p4.png

 
 

e) 分布活荷重載荷時( LP2スパン中央の変位:-159 mm (中村先生 : -162 mm )
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p5.png

 
 

f) Pr + D + CW + LP1 +LP2スパン中央の変位:-1,400 mm (中村先生 : -1,398 mm )
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/M300/p6.png

 
 
 

ファイバー要素

 
 

・第一局所方向積分
SIMPSON / NEWTON-COTESかガウスか
次数1

 
 
 
 
 
 
 
 

弾塑性解析

・荷重を増分荷重にする
▸テーブル
Type:time
Formula:1.0v1

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s16.png

 
 

2.ケーブル・モデル:
長さ1mのケーブルとする。
B点に鉛直荷重P = 1.0 kN を増分載荷する。

断面: 半径 10mm の円形とする。

構成則に関しては、はりと同じ計算方法で計算を行い入力した。

解析結果
1)自由端の鉛直変位と荷重の関係

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p5.png

2)ひずみと荷重の関係

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p6.png

3)応力とひずみの関係

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p7.png

全てのグラフにおいて中村先生の結果と一致した

 
 

中村先生(メモ)

弾塑性
テーブル(降伏応力・ひずみの入力)、
・挙動をより詳細にみる
固定端が壊れているか、軸応力が発散しているか
・縁端応力の表示の仕方
→値を見直して結果の図を送る

Model-300の線形解析
・各作用荷重ごと(Pr,D,CW,L)結果(変位・応力等)を確認
・ステップに分けて(作用荷重)、結果を確認できるかの確認

斜張橋モデルの断面計算
・許容応力度法
道路橋示方書、鋼構造

 
 

はり・ケーブル単独の弾塑性解析
はりモデル:
・長さ1mの片持ち梁とする。
・自由端に鉛直荷重P = 1.0 kN を増分載荷する。
・部材断面 ・はりの断面は10 cm x 10 cm の正方形とする。5×5のファイバー要素に分割した。
・はりはSM400とする。初期ヤング係数は 2.0 x 105 N/mm2 とする。

構成則入力の変更点:
テーブル(タイプ:eq_plastic_strain)にεの値をそのまま入力するのではなく、
εp=εt-εe
~εp=εt-εe
εt:真ひずみ、εe:弾性ひずみ、εp:塑性ひずみ
の計算式で計算し、テーブルには塑性ひずみの値を入力した。

以下の図ようなイメージです。

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p1.png

その他の設定
・反復法:完全ニュートンラプソン
・収束判定 残差と変位(相対許容値):0.001

解析結果(以下 青線:中村先生の解析結果、オレンジ線:Marcでの結果)
1)自由端の鉛直変位と荷重の関係

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p2.png

2)断面応力(Layer1)と荷重の関係

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p3.png

3)応力とひずみの関係(上縁から1cm)

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/dansosei/p4.png

 
 

メモ

 
 

温度応力

・初期条件▸新規(構造)▸仮想温度

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/ka1.png

 

中村先生
・ケーブル要素は用いない(高度な計算になり複雑になるため)
・代わりに梁要素に温度荷重を与えてケーブルのプレストレスとする
・ソリッドでの全景モデルで構造計算することは、かなり難しい
・骨組みモデルで計算する

 
 

結果ファイル▸反力Y
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/sa5.png

 
 

結果ファイル▸変位Y
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/sa4.png

 

いろいろと試してみて、
境界条件▸新規(状態変数)▸節点温度(-200℃)▸2要素の結合部に設定で
それっぽい形になった

 
 

・節点温度の確認
片持ち梁を2分割し、3つの節点 A,B,C を

(1)A=-100, B=0, C=0
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s10.png
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s11.png

 

(2)A=0, B=-100, C=0
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s8.png
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s9.png

 

(3)A=0, B=0, C=-100
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s6.png
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s7.png

 

(4)A=-100, B=-100, C=-100
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s12.png
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s13.png

 

(5)A=0, B=-100, C=0 、左側の要素に熱膨張係数を入れない
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s14.png
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2108/s15.png

・節点温度を与えると、節点に接している要素全体に温度応力がかかる
・熱膨張係数を与えている部材のみ、温度応力がかかる
(熱膨張係数が与えていなければ節点が共有されている要素には温度応力はかからない)

 

中村先生(メモ)
・境界条件▸節点変位 で本当にケーブルに対して温度応力を与えることができているか
手計算と比較、片持ち梁で段階的に節点温度を与えて挙動をみる
・ファイバー要素▸弾塑性解析
・斜張橋モデル▸終局強度

・解析後、必ず結果を確認

 
 
 
 

Salome_meca

これまでのまとめ・整理

<大まかな流れ>・salome_mecaでケーブル(プレストレス)をどう表現するか。
↓       ・解析可能であるのか、適切な結果が出るのか
↓ keyword:・ケーブル要素
↓     ・温度変化
↓     ・線形、非線形解析
↓     ・ヒンジ

ケーブル要素…コンクリートのプレストレスとして用いられる?
       PCのような緊張力を想定している?(salomeの文献から)
ケーブル要素×
→温度変化で緊張力を再現(20℃→200℃)
・salome_meca梁モデル〇
・線形解析〇(たわみの値は中村先生と同じ)
・片持ち梁をソリッド、ケーブルを梁要素(上記と同じ条件)〇

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr15.png
熱応力・梁要素(ケーブル)片持ち梁【10m・集中荷重】たわみ-4.15603mm

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr16.png

・たわみ0.03373mm
・鉛直荷重1kN
・ケーブルの温度変化-200℃
・ソリッドの断面10cm×10cmの正方形、ケーブル半径10cmの円形

 

線形解析→非線形解析(弾塑性解析)
・(弾塑性)梁モデル→multfiber?(現在×)
・(弾塑性)ソリッドモデル→〇
・(弾塑性)ソリッドと梁のモデル→× salome_mecaでは弾塑性解析をするとき、すべての部材(異なる材料があるとき)に弾塑性の設定を与える必要がある(仮説)

斜張橋モデル(ソリッドと梁) 線形解析×

ソリッドモデルの弾塑性解析→結果が中村先生と異なる。ケーブルに曲げが生じている?(構造としてはありえない)ヒンジにできていない?

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/depo2.gif
scalefactor20倍

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr31.png
斜張橋モデル

 
 
 
 

斜張橋モデル

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr31.png

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr32.png

PCがかなり重くなる...

 
 

モデルの作成方法(Geometry)は、
①まずケーブル(Line)14×4=56本を作り、それらをfuse(fuse1とする)
②主塔(Line)をつくり、同じくfuse(fuse2とする)
③床版(solid)をつくる(Box1とする)
④ケーブルの縁端部(solid側)の節点をグループ化する(54個)、載荷・固定のグループ化
⑤fuse1、fuse2、Box1、それぞれメッシュを切ってcompound
が一連の流れになる

 

・しかし現在、作成したモデルで線形解析ができない。

impossibility, the node N5 carries the degree of freedom of rotation  DRX~

エラー内容は「ノード(N5?)の回転自由度がない」といっているらしいので
fuseをせずにモデルを作成できるか模索してみる。
fuseをすると部材同士が一体化されるので、実際の斜張橋を構造的に再現できていない可能性がある。
実際の斜張橋は、ケーブルと塔との結合部はヒンジになっており回転は許されるようになっている。

 
 
 

弾塑性解析

MULTIFIBREがうまくいかないので、とりあえずニュートン法でやってみることにした
「2部材あったとき両方に構成則を与える必要がある」という制約があるらしいので
いままで梁要素(ケーブル)をソリッド(円柱)に変えてモデルを作成した。

・最初に上記のモデルで温度応力を与えた状態のみで解析可能であるか検証

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr18.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr19.png

 

続いて同じモデルに対して弾塑性解析(ニュートン法)できるかの検証

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2106/scr17.png

 
 

接線同士を重ね合わせてヒンジ?とした。

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/depo2.gif

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/depo2.png

 
 

・POU_D_E、POU_D_T要素は非線形では使えない(単純なオイラー・ティモシェンコ梁の有限要素では
単純に増分塑性を計算することはできない。断面積分を適用する必要がある)
・代わりに使える要素→POU_D_EM、POU_D_GM(マルチファーバー)
・要素特性を定義するコマンドAFFE_CARA_ELEMの設定が必要
AFFE_CARA_ELEM
・GEOM_FIBRE
・MULTIFIBRE
の設定がうまくいかない。

  !  DEFI_GEOM_FIBRE VALE : Pour .NOMTM          $$XNOM il y a 1 valeurs, ce devrait !
  ! être un multiple de 3    

・ソリッドと梁のモデル(ソリッドだけ弾塑性)は

  ! Aucune maille du maillage mesh n'a été affectée par des éléments finis.!
  !  In the mesh" mesh" the mesh" 3531" is of type" TETRA4" (neither TRIA3 nor !
  ! QUAD4)  
 
 

弾塑性解析 350kN
・DEPL_自由端
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/dep350.png

荷重(kN)変位(mm)
00
351.446695
70-0.930408
1050.564237
1402.28589
1754.37557
2106.64201
2459.06512
28011.7471
31515.1006
35019.2662
 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/depl350.gif

・ケーブルの断面形状を円柱→四角形

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/scr20.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/scr21.png

 
 

・結果(アニメーション)
300kN
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/dep2.gif

 

試しに線膨張係数を小さく
1.2×10-5 →1.2×10-7
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tunoda/dep3.gif

 
 

温度応力

 
 

・ケーブル要素を用いたモデルで今まで解析を試みていたが、一旦
モデルを梁要素で作成し、熱応力でケーブルプレストレスを再現することにした。

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr8.png http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr9.png

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr10.png

 

スケール10倍
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr11.png
・集中荷重1000N
・温度−200℃
・先端のたわみ量 -4.15603mm

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr12.png
・ケーブルのはりのノードが3つになってしまっている
→メッシュの設定の Numbwr of segments でセグメント数に1を入力することで解決
・先端のたわみ量 0.03mm(ケーブルプレストレスなし)

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr13.png
・節点がヒンジになっていることを確認

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr16.png

ソリッドと梁要素(ケーブル)のモデルで、温度応力を与えた解析はまわることが確認できた。
・たわみ0.03373mm
・鉛直荷重1kN
・ケーブルの温度変化-200℃
・ソリッドの断面10cm×10cmの正方形、ケーブル半径10cmの円形

梁モデル(片持ち梁をケーブルで吊った構造)の弾塑性解析は色々試して入るがうまくいっていない

 
 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr14.png
熱応力・梁要素(ケーブル)片持ち梁【1m・分布荷重】たわみ-3.4429mm

 

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr15.png
熱応力・梁要素(ケーブル)片持ち梁【10m・集中荷重】たわみ-4.15603mm

 
 
 

簡易モデル

salomeで、ケーブル要素を用いた簡易的なモデルを作成し解析を回してみた。
↑中村先生の解析結果と比較する

  1. 片持ち梁モデル
  2. 片持ち梁にケーブルをつないだモデル(荷重なし)
  3. 片持梁にケーブルをつないだモデル(荷重あり)
     
    1.片持ち梁モデル
    ・(x,y,z)=(100,100,10000)
    ・鋼材E=200GPa,σ=0.3
    ・荷重1km/m(等分布)
    http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/April/scr1.png
            ! Exception user raised but not interceptee.                    !
            ! The bases are fermees.                                        !
            ! Type of the exception: error                                  !
            !                                                               !
            ! Solver MUMPS:                                                 !
            !  The solution of the linear system is too vague:              !
            !  Computed error:  5.59007e-05                                 !
            !  Acceptable error:  1e-06 (RESI_RELA)                         !
            !                                                               !
            !  Advices:                                                     !
            !  One can increase the value of the key word SOLVER/RESI_RELA. !
    ・収束判定の設定..
     
     

2.片持ち梁にケーブルをつないだモデル(荷重なし)
・ケーブル半径1cm、E=200GPa
・ケーブル張力6.233kN

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/April/src2.png

  ! <S> Exception user raised but not interceptee.                            !
  ! The bases are fermees.                                                    !
  ! Type of the exception: error                                              !
  !                                                                           !
  !  les 9 mailles imprimées ci-dessus n'appartiennent pas au modèle          !
  !  et pourtant elles ont été affectées dans le mot-clé facteur : FORCE_FACE !
 
 

片持ち梁のモデルの解析ができていないので優先して取り組むことにした。
モデルの荷重のかけ方は等分布荷重だったので、載荷面をボックスの上面に指定して解析を回していた。
→これを線載荷に変更して同様に試みた。

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr3.png

  ! <S> Exception user raised but not interceptee.                !
  ! The bases are fermees.                                        !
  ! Type of the exception: error                                  !
  !                                                               !
  ! Solver MUMPS:                                                 !
  !  The solution of the linear system is too vague:              !
  !  Computed error:  1.58999e-05                                 !
  !  Acceptable error:  1e-06 (RESI_RELA)                         !
  !                                                               !
  !  Advices:                                                     !
  !  One can increase the value of the key word SOLVER/RESI_RELA. !

・26日のエラーとほとんど同じ

・同じモデルで集中荷重(先端)で試した
→うまくいかなかった

 
 

モデルが(100,100,10000)だったので(100,100,1000)にしてみて試してみた。
↑10cm,10cmの断面に対して、10mが長すぎるのではないかと予想

・集中荷重(先端)

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr4.png

http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr7.png

・10mにしたらうまくいった

 
 

・(100,100,1000)で集中荷重も試みた
→載荷面を上面に指定
http://www.str.ce.akita-u.ac.jp/~gotouhan/j2021/tsunoda/2105/scr5.png

・問題なく解析できた
・やはり(100,100,10000)という寸法で解析すること(片持ち梁)に無理があったのか?..

 
 

・直近の課題はケーブル要素を用いた簡易的なモデルを作成して青木さんのFEM解析の結果と比較する

片持ち梁(分布)片持ち梁(先端集中)片持ち梁(分布・ケーブルあり)片持ち梁(先端荷重・ケーブルあり)
××

・固定面に載荷面が触れていても問題なく実行できた
・しかし、ケーブルの設置点と載荷部分が重なるとエラーが生じた。

  !  les 3116 mailles imprimées ci-dessus n'appartiennent pas au modèle       !
  !  et pourtant elles ont été affectées dans le mot-clé facteur : FORCE_FACE 

・対策として、
(1)載荷面をケーブルの接地点から1mmほどずらして設定し直す
(2)ケーブルはケーブル要素、四面体のボックスは3Dで分けて設定していたのを、ケーブル・ボックス含めて全体を3Dに設定且つ
ケーブルはケーブル要素に設定するに変更(ケーブルとボックスの接地点を解析に含まれるようにするため)
・次のエラーメッセージ

  ! Erreur utilisateur :                                            !
  !   Vous voulez contraindre le ddl DRY sur un ensemble de noeuds, !
  !   Mais ce ddl n'existe sur aucun de ces noeuds.                 !

(ノードが含まれていない?)

・メッシュの切り方を3Dだけ→3D且つ、アルゴリズム(補完)2D、1Dまで設定しメッシュを切る
・ケーブルの固定点のBC&Loadの設定を変えてみる
・梁だけのモデル(ケーブル要素含む)、ケーブル単体のモデルを作成
→いずれも同じエラーメッセージだった

・ケーブル要素は非線形でしか使えない可能性がある(線形では使えない)
・非線形モデルを作成して試してみる
・梁とBARRE要素を用いてモデルを作成してみる

→BARRE要素と梁を用いたモデルで解析を回してみたが同じエラーが出た

  ! Erreur utilisateur :                                            !
  !   Vous voulez contraindre le ddl DRY sur un ensemble de noeuds, !
  !   Mais ce ddl n'existe sur aucun de ces noeuds.                 !
 
 

salome例題ファイル

熱応力・梁要素(ケーブル)
片持ち梁【集中荷重・1m・10m】
1. 【集中荷重・1m】(hari4)
・Geometryの作成:新しいエンティティ->基本オブジェクト->点->(0,0,0),(0,0,1000)作成
・基本オブジェクト->線->Vertex1、2->Line1作成
・点->(0,-1000,0)->Vertex2、3->Line2作成
・Fuse->Line1、Line2->Partition->Fuse1、Line1、Line2
・Line1グループ作成->node(0,0,0)-kotei->node(0,0,1000)-saika
・Line2グループ作成->node(0,-1000,0)-kotei2
・Mesh1:Line1->ジオメトリのグループ作成->ジオメトリ-Line1->node-kotei-saika
・Mesh2:Line2->Wire Discretisaition->Number of Segments->セグメント数1->ジオメトリのグループ作成->ジオメトリ-Line2->node-kotei2
・Compound_Mesh->Mesh1、2
・Astestudy:メッシュ->Read a mesh->format-Med
・Material:Model Definition->Assign finite element->Finite element->Everywhere->Mechanic->POU_D_E
・Model Definition->AFFE_CARA_ELEM->POUTRE->RECTANGLE->Group-Line1->CARA-HY-HZ->Value-100-100
・Material:Define a material->Linear isotropic elasticity->ヤング率200000->ポアソン比0.3
・Material:Define a material->Linear isotropic elasticity->ヤング率200000->ポアソン比0.3->Thermal expansion 1.17e-0.5
・BC and Load:EnforceDOF->Group node-kotei->Laison-ENCASTRE->DX~DRZ-o
・EnforceDOF->Group node-kotei2->Laison-ENCASTRE->DX~DRZ(DRX以外)-o
・FORCE_NODLE->Group node-saika->FY-1000
・Post Processing->CREA_CHAMP->Model-AFEE_MODELE->TYPE_CHAM-NOEU_TEMP_R->OPERATION-Assingment->
Group element-Line2->Value- -200->NOM_CMP-TEMP
・Material:Assigm a material->Model-model(AFEE_MODELE)->Marerial assigment->Group-Line1->mater->
Marerial assigment->Group-Line2->mater0->External state-Temperature->Reference value-20->Group-Line2->Field-unnamed5->
・Analysis->Material field->Structural element->Model->Load=Load->Solver->Method-MUMPS->RESI_RELA-0.01
・Post processing CALC_CHAMP->SIGM_NOEU->MODEl-model->Material field->fieldmat->Structural element
・Output->Set output result->Format-Med-> Result-DEPL-SIGM_NOEU

1m.comm
(commファイル:一度保存してAsterstadyでエクスポートすることによって利用可能。hdfファイルではないため、Geometry等は反映されない)

 

2. 【集中荷重・10m】(10m)
1.集中荷重1mとほとんど同じ。異なる点は、Geometryで10mのモデルを作ることとAstestudyの
SolverでNPREC->-1、RESI_RELA->20にする(収束基準・条件を緩和する)

10m.comm

#br 片持ち梁【分布荷重・1m】
3. 【分布荷重・1m】(bump2)

bunpu.comm

1.集中荷重1mとほとんど同じ。異なる点は、BC and Loadで載荷のオプションを変更することのみ。

FORCE_POUTRE=_F(FY=1.0,
GROUP_MA=('saika', )),
MODELE=model)
 

メモ

 

参考文献

 
 
 
 

トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS