土木学会論文報告集 第230号 · 1974年10月

橋梁振動の人間工学的評価法

ERGONOMIC EVALUATION METHODS FOR BRIDGE VIBRATIONS

小 堀 為 雄*・梶 川 康 By Tameo Kobori and Yasuo Kajikawa

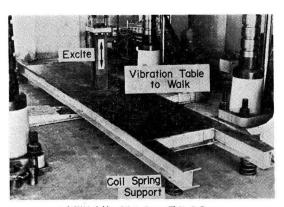
1. まえがき

土木構造物は動的外力を受けて,大きいか小さいかの 差こそあれ振動する。このことから従来より振動につい ての多くの研究がなされてきた。それらの研究は, 主と して外力が作用したとき構造物がどのような動的応答を 示すかについての力学的研究や構造物が振動することに よってどのような影響(たとえば、疲労や塑性変形など) を受けるかについての材料強度学的研究であった。

ところが、構造物の振動が構造物 以外に 及ぼす 影響 (たとえば、人間への影響など) はほとんど考慮されて いないのが現状である。

橋梁の振動においても同様で,最近,よく振動する橋 梁が現われるようになり多くの実験が行われ,動的安定 性の検討がなされてきた。しかし、その検討は主として 力学的あるいは材料強度学的に行われてきた。 ところ が、"橋梁の振動が大きい"ことにより歩行者から次の ような反応があるであろう。

- (1) 振動で橋梁は壊れるのではないかという不安。
- (2) こんなに揺れるのは設計上あるいは施工上の欠 陥があるのではないかという非難。
- (3) 振動による生理的影響の結果として歩けなくな るという不満。

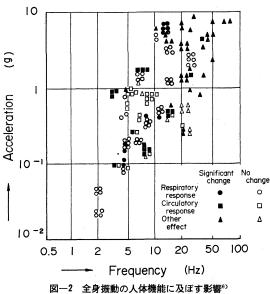

以上の3点のうち、(3)の生理的影響が生ずるほどの 振動は許されないとしても,(1),(2) は主観的反応であ るために動的安定性の検討がなされ、「橋は揺れるもの であり,大丈夫だ」と歩行者に教育すれば,かなり大き な振動にも耐えられる、との報告いもある。しかし、橋 梁の振動はなるべく小さいほうが望ましく, 設計の段階 において橋梁の振動をより小さくする努力は払うべきで

* 正会員 工博 金沢大学教授 工学部土木工学科

** 正会員 金沢大学助手 工学部土木工学科 (現在福井工業大学講師)

あると考える。

そこで,本論文では振動が人間に及ぼす影響を,生理 的影響・人体の動的応答・心理的反応に大別し、それぞ れについて考えてみた。まず, 生理的影響についての研 究は主に医学の分野で行われているので、その成果を基 に橋梁の振動においてどの程度の影響があるかを考え た。次に,人体の動的応答については橋梁の振動におい てこの種の問題をいかに考慮すべきかについて,実験を 含めて考察した。最後の問題である心理的反応について は従来,乗心地や居住の快適性などにおいて研究され, また,最近計量心理学の手法が発展し,振動に対しても 三輪ら2)によって広範囲な研究が行われた。しかし、橋 梁の振動を対象に行われた研究は非常に少ない。その理 由の1つに、従来の研究成果からこの問題を考えるため には姿勢や振動波形の点で未解決な問題が残されている ためであろう。橋梁における振動感をより小さくするよ うな橋梁構造や防振方法を考えるためには, この基本的 な問題が解決されねばならない。その第一段階として, 弛緩した直立姿勢において 基礎的な振動感覚実験を 行 い、実橋振動の実態調査結果をあわせてすでに文献3)で

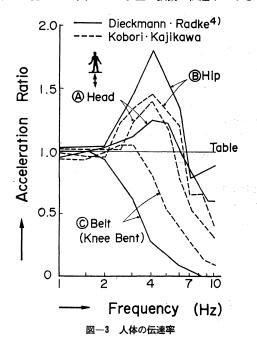

4点弾性支持,幅 1.2 m,長さ 6.5 m 動力源 島津サーボパルサ EHF-40 図-1 振動台

報告した。ところが,文献 3)でも指摘したように橋梁上 で振動を受ける場合, ほとんどの人が歩いていることや 橋梁振動は隣接した優勢な低周波成分を数個もつ不規則 な振動であることを考慮せねばならない。そこで、本論 文においては、図-1 に示すような歩行が可能な大型振 動台を製作し、この上を実際に歩いたとき、どのように 振動を感ずるかを測定し,歩行時における振動の心理尺 度を求めた。また,実波形あるいはそれに近い波形を用 いて, ランダムな振動に対する感覚実験をも実施し, 橋 梁上での実感にできるだけ近い評価尺度を求めるととも に,道路橋における振動恕限度を提案した。

2. 生理的影響

まず,最初に,振動を受けることにより生理上どのよ うな変化が生ずるかを考えた。人間が振動を受ける際, 局所的に受ける場合と全身に受ける場合がある。前者は 振動工具などを使うとき問題になりレイノー現象などと して, その影響はよく知られている。後者は乗心地や居 住性などを問題にする場合であり、橋梁の振動もこれに 属する。全身振動を受けたとき、人体は安定した状態を 保持するために交感神経の機能が昻進し, その結果とし て循環器・呼吸器・消化器などにさまざまな反応が生ず る。また,尿中成分やホルモンの変化という内分泌系の 反応・せき柱の異常, 聴器や音声に及ぼす影響などが現 われるといわれている4)~7)。

これらの影響を総括して岡田61は 図-2 のようにまと め,加速度 0.08 g 以下での生理機能障害は報告されて おらず,これ以下の振動強度についての実験が必要なこ とを強調している。



以上のことより、橋梁の振動数がほとんど 5 Hz 以下 であり,加速度も通常ではそれほど大きくならないこと を考えれば、この生理的影響は小さいものと考えられ る。しかし、現実に「めまい」を生ずるような橋梁が存 在することは周知のとおりである。これは、従来の生理 的影響に関する研究が大きな振動を対象にしてきたこと もあり、今後小さな振動での研究が待たれているのが現 状である。

3. 人体の動的応答

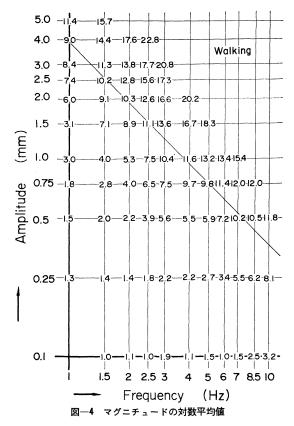
この種の研究は、人体の共振点などを知る上で重要で あるとともに振動が人体各部へどの程度伝達されるかを 知ることもできる。これにより振動を受ける人間の安全 性を高めるために非常に役立っている。この応答は,人 間の姿勢や振動の方向によって大きく左右される。そこ で、橋梁の振動を対象にしていることから立位における 上下方向の振動について考えてみた。

Dieckmann や Radke⁴⁾によれば、振動台と人体各部 との伝達率(加速度比)は図-3の実線のように示され ている。著者らも、図-1 に示した振動台を用い、この 振動台と被験者に小型加速度計を取りつけて同様な伝達 率を求めてみた。その結果を図-3の破線で示した。図 -3 の両者を比較してみるとほぼ同じ傾向にある。立位 では頭部A・臀部Bともに3~6 Hzに共振点がある。ま た,図中®の線で示した膝を曲げた状態は橋梁上を歩く 姿勢に類似している。この状態において共振点がはっき りとは認められず、3Hz 以上の振動で伝達率は小さく

なっている。これと同じ傾向は岡田の研究⁸⁾ によっても 認められている。このことは、歩いているときに高い振 動数の振動が上体には伝達されずに、振動感が足に集中 していることと一致する。

以上のことより橋梁上で歩行者が常に歩いているならば、この種の影響はないといえるが、立ち止まることの多い場合には 3~6 Hz の振動は好ましくない。 これについては、次節で述べる心理的反応とともに考える必要がある。

4. 心理的反応


(1) 評価尺度

近年,心理学の分野において計量化の手法が多く用い られるようになった。特に,音響関係では音響心理学と よばれる手法で多くの研究がなされ、Phon や Sone な ど多くの尺度が提案されている。また,振動関係では三 輪ら²⁾ が音響心理学の手法を用いて、明確な結果をわれ われに与えてくれた。ところが、三輪らの研究を含めて 従来の評価尺度は座位または緊張した立位に対して適用 できるが、橋梁上の歩行者に対して適用するには姿勢の 点に疑問がある。この疑問を解決するには、弛緩した立 位や実際に歩いている姿勢(以後,歩行位という)での 実験が必要である。そこで,これらの姿勢における評価 尺度を検討するために計量心理学的手法の1つであるマ グニチュード 推定 法³),9) (Magnitude estimation method) を用いた。この方法は、標準の振動 (3 Hz, 振幅 1 mm)を設定し、その振動によって与えられる感覚の 大きさをかりに 10 として, さまざまな振動 (1~10 Hz, 振幅 0.1~5 mm の組合せ 80 点) が与える感覚の大き さがいくつに相当するかを数値によって答えさせるもの である。この手法による弛緩した立位の結果については すでに報告3)した。ところが、橋梁上では通常歩行位で あることから、図―1 に示した振動台の上を1人ないし 2人の被験者が歩いたとき、振動をどのように感ずるか を同様にこの手法を用いて実験を行った。図-4 は被験 者11人に対し2回ずつ計22回の実験結果を各点の振動 ごとに対数平均した値を示したものである。図中、斜め に引いた細線はマグニチュード等値線すなわち等感覚線 の一例である。これより振動数と変位振幅はマグニチュ ードをパラメーターに指数関係にあることがわかる。そ こで、等しい感覚を生じさせている振動の刺激を次式で 定義する3)。

 $S=a\omega^m$ (1)

ここに、S:振動感覚を生ずるための刺激

a: 変位振幅 (cm)

ω:円振動数 (rad/sec)

 $m:\omega$ に関する指数

式 (1) の両辺を対数にとると式 (2) のように変形される。

 $\log_{10} a = \log_{10} S - m \log_{10} \omega \quad \cdots \qquad (2)$

したがって、マグニチュード等値線の勾配は、等しい感覚を生じさせている刺激に振動数がどの程度関係するかを示す指数 m を表わしている。そこで、マグニチュードと振動数・変位振幅との重回帰を求めると、歩行位においては等値線の勾配はほぼー1になる。これは、刺激として振動速度を考えるのが適切であることを示している。弛緩した立位においては、この勾配がほぼー1.4であった。歩行位においてこの勾配が緩くなることは、前節で示したように歩行位において高い振動数の振動が脚部に吸収されてしまうことから考えれば理解される。

次に、刺激として定義された量(歩行位の場合には振動速度 $a\omega$ 、弛緩した立位の場合には $a\omega^{1.4}$)とマグニチュードがどのような関係にあるかを調べた。図— $\mathbf{5}(\mathbf{a})$ には,振動速度とマグニチュードを対数で示した。マグニチュードの小さい範囲ではばらつきが大きいが両者は破線で示したようにほぼ曲線関係にある。そこで,この曲線を 2本の直線で近似することにする。この両対数軸上で直線関係にあることは次式で示す Stevens o n 乗法

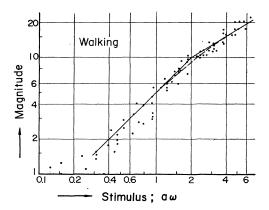


図-5(a) 歩行位における刺激とマグニチュード

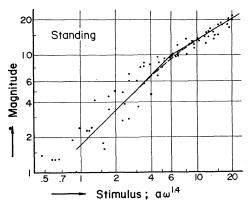


図-5(b) 立位における刺激とマグニチュード

則3),9)が成り立つことを示している。

$$R=kS^n$$
(3)

ここに, R:感覚の相対的な大きさ(比率尺度値)

S:振動刺激

n:様相特性指数

k: 基準値などに関する定数

ここで、われわれの測定したマグニチュードは基準量に対する感覚量の比を表わしていることから、式(3)のRと同意であると考えることができる。したがって、式(3)の両辺の対数を考えれば、次のようになる。

 $\log_{10}R = \log_{10}k + n\log_{10}S$ (4)

ここで,様相特性指数nは図—5の直線の勾配を示しており,図—5(a) すなわち歩行位の場合は次の値となる。

 $S(=a\omega) \le 2$ cm/sec では n = 1.0

 $S(=a\omega) > 2$ cm/sec では n = 0.6

k は前述のように基準値などに関する定数であるので、識閾に関する項 S_0 "をも含めて考える

$$\log_{10}R = n \log_{10}(S/S_0) - b \cdots (5)$$

 $C \subset \mathcal{T}, b = -\log_{10}(kS_0^n) \mathcal{T} \otimes S_0$

式 (5) を三輪ら 2 の提案する記号を用いて表現すると次のようになる。 R を振動の大き さ VG (Vibration Greatness の略) に、n を 20 N とし、 $20\log_{10}(S/S_0)$ で表わされる量を振動の大きさのレベル VGL (Vibration Greatness Level の略) に置き換えれば、

そして,本研究での実験によれば S>2 cm/sec では n が約 0.6 であるので N は 0.03 となり,三輪ら 2 の評 価尺度や音の大きさを示す尺度 "Sone" と ほぼ一致する。

以上に述べたのは歩行位についてであるが,弛緩した立位の場合には刺激 S として $a\omega^{1.4}$ を考えて,マグニチュードと刺激の関係 $^{3)}$ を図 $-\mathbf{5}$ (b) に示した。この図より直線の勾配は次の値となる。

$$S(=a\omega^{1.4}) \leq 6$$
 では $n \rightleftharpoons 1.0$

$$S(=a\omega^{1.4}) > 6$$
 では $n = 0.6$

これより、立位の場合にも刺激 S として考える 量を変えれば、式 (6) で同様に振動の大きさ VG が得られる。

以上に述べてきた尺度は,マグニチュード推定法に基づくもので,刺激がある値以上であれば三輪ら 2)の VG や Steveus の Sone 10) と一致し,興味ある結果であるが,刺激の小さい範囲ではnが 1.0 となり,刺激と感覚の大きさが比例関係にある。そこで,この範囲での尺度を照査するために,分・倍数刺激選択法 9)(Fractionation and Multiple stimuli method) とよばれる計量心理学の手法に基づく実験を行った。

この方法は、標準刺激を選んでおき主観的意味でその 1/2 あるいは 2 倍に相当する刺激を用意した刺激群の中から選択するものである。そこで、本研究では表—1 に示したような 4 点の標準振動を決め、その振動と同じ振動数で小さい振幅の振動を 10 点、大きい振幅の振動を 10 点、それぞれ等差数列的に用意した。 それらの 上・下限の振幅を表—1 に示した。予備実験として 3 人の被験者に対し弛緩した立位・歩行位の両姿勢において行ったが、それぞれには有意な差は認められなかったので、

表-1 分・倍数刺激選択法

T	C. 1 1	Produced Ampl. Range(mm)				Mean Ampl.	
Freq.	Ampl.	Fra	ct.*	Mult	.**		m) Î
(112)	(IIIII)	Lower	Upper	Lower	Upper	Fract.*	Mult.**
1.5	1.00	0.25	0.70	1.25	3.50	0.50	2.18
2	0.75	0.20	0.65	0.80	2.60	0.40	1.58
3	0.33	0.13	0.24	0.44	1.22	0.17	0.73
4	0.17	0.068	0.154	0.205	0.684	0.10	0.33
	(Hz) 1.5 2 3	Freq. (Hz) Ampl. (mm) 1.5 1.00 2 0.75 3 0.33	Test Standard Freq. (Hz) Standard Ampl. (mm) Fraction Fraction 1.5 1.00 0.25 2 0.75 0.20 3 0.33 0.13				Test Fred Ampl. (Hz)

^{*} Fract. は分数刺激選択法 (Fractionation method の略)

^{**} Mult. は倍数刺激選択法 (Multiple method の略)

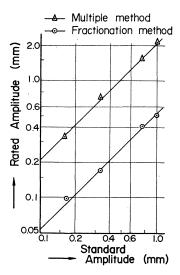


図-6 基準振幅と評定振幅

弛緩した立位で 11 人の被験者に対し各 2 回ずつ計 22 回行った。それらの結果を対数平均した値を表-1 に示した。刺激と感覚の大きさとの関係が式 (3) で表わされるようにべき乗であるとすれば,標準振動の刺激 (S_1) と選択された分・倍数刺激 (S) との関係は次式となる。

$$\frac{R}{R_1} = \frac{kS^n}{kS_1^n} = \left(\frac{a}{a_1}\right)^n = \beta^{\gamma} \cdot \dots \cdot (7)$$

ここで、 β は公称比 2.0 であり、 γ は分数・倍数によって -1、+1 をとる。

式(7)の両辺の対数をとり変形すれば

$$\log_{10} a = \log_{10} a_1 + \gamma \frac{\log_{10} \beta}{n} \cdots (8)$$

となる。図―6 に測定結果をプロットした。各点を結ぶ直線上の任意な点より n を求めるとほぼ 1.0 になり、マグニチュード推定法によって得られた指数 n が妥当なものであることが確認できた。この指数 n がほぼ 1.0 になることは、音の大きさを示す "Sone" の指数においても認められる。すなわち、40 Phon 以上では音の大きさが音圧の 0.6 乗に比例しているが、20~40 Phon では音圧にほぼ比例しているといえる¹⁰。これは本研究で求めた指数と全く一致し、音の大きさと同様に式 (6) によって振動の心理的大きさを評価することができる。

(2) ランダム振動に対する検討

(1) において、橋梁振動の評価をする際には歩行者の姿勢によって大きく変わることを示し、歩行位における評価尺度について述べた。橋梁振動のもう1つの特徴として、振幅が規則正しい正弦振動ではなく不規則なランダム振動であることがあげられる。この振動に対しての心理的反応を検討するために、一対比較法により次のような実験を行った。

a) ランダム振動等価法

この方法は,実橋の振動波形を再生して振動台を制御 し、その感覚に等しい正弦振動を見つけ出すものであ る。まず,表-2 のように実橋の変位記録から数種の波 形 $(A \sim F)$ を選び、その卓越振動数 (f) と変位振幅の 標準偏差 (σ_r) をスペクトル解析により求めた。そして, その波形の卓越振動数と等しい振動数で振幅が σr から $3\sigma_r$ まで $0.1\sigma_r$ 刻みの 21 点の正弦振動を用意し,実 波形による再生振動と正弦振動とを交互に提示し感覚的 等価点を求めた。予備実験として3人の被験者に対し弛 緩した立位・歩行位の両姿勢において行ったが、それぞ れには有意な差は認められなかったので弛緩した立位で 11 人の被験者に対し各 2 回ずつ計 22 回行った。また, 各ケースにおいて再現性を確かめるために,同じ波形を 用い増幅率を変化させて行った。その結果、得られた等 価振幅の対数平均値を表-2 に A_s として示し、さら に、この A_s とランダム振動の標準偏差 σ_r との比を示 した。

この実験結果より、一部のケースを除いてランダム振動の標準偏差のほぼ1.4倍の振幅をピークにもつ正弦振動と感覚的には等しいことがわかる。このことは、橋梁の振動波形は一見ランダムなように見えるが、決してそのランダム性は強いものではなく、橋梁の振動による心理的反応を考える上では正弦振動によって得られた評価尺度・恕限度がそのまま適用できることを示している。

b) 複合正弦振動等価法

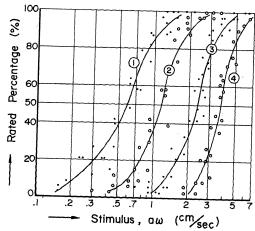
実橋の振動には数個の優勢な周波数成分が同時に含まれていることが多い。このような場合、それぞれの振動刺激を考え、その和を評価すると、それらが同時に生ずることがまれなため過大評価となる。そこで、それぞれの成分をどのように評価すべきであるかを検討しなければならない。騒音関係では Stevens の 荷重加算法¹⁰が 用いられ、また、三輪ら²⁾ は振動においてもこの加算法

表-2 ランダム振動等価法

0	Random	Vibration	Sinusoidal	A_s	
Case	Freq. (Hz)	σ _r * (mm)	Ampl. A_s	σ _r	
A	2.01	0.95 1.27	1.59 2.18	1.67 1.72	
В	2.47	0.84 1.66	1.17 2.32	1.39 1.40	
С	2.48	1.37 1.78	2.06 2.63	1.50 1.48	
D	2.74	1.10 1.46	1.52 2.05	1.38 1.40	
E	3.39	0.53 0.82	0.71 1.11	1.34 1.35	
F	4.11	0.78 1.17	1.13 1.80	1.45 1.54	

^{*} この σ_r は実効振幅 (RMS 値) である.

表-3 複合正弦振動等価法

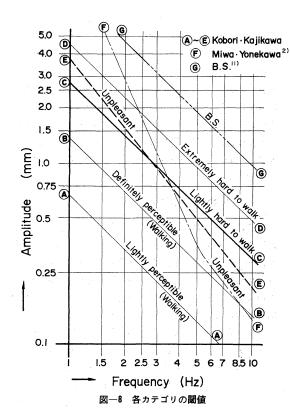

Main Vibration			Added '	Vibration	Equivalent Vibration						
Case	f (Hz)	a (mm)	f (Hz)	a (mm)	f (Hz)	On Standing Posture			On Walking Posture		
						A _s (mm)	S_s	$(\Sigma S^2)^{1/2}$	A_{w} (mm)	S_w	$(\Sigma S^2)^{1/2}$
A	1.5	1.43	3.0	0.62	1.5	2.12	4.90	5.02	2.01	1.89	1.78
В			1.5	1.43		1.43	4.95	4.89	1.56	1.96	1.88
С			3.0	0.62		1.51	5.22	5.22	1.48	1.86	1.75
D	0.0		4.0	0.60	2.0	1.78	6.16	6.55	1.55	1.95	1.99
E	2.0	1.04	1.5	0.66		1.39	4.81	3.91	1.30	1.63	1.45
F			3.0	0.30		1.36	4.70	4.04	1.26	1.58	1.43
G			4.0	0.22		1.32	4.56	4.12	1.25	1.57	1.42
Н			1.5	0.66		0.72	4.39	4.08	0.70	1.32	1.32
I	3.0	0.62	2.0	0.45	3.0	0.71	4.33	4.09	0.68	1.28	1.29
J			4.0	0.22		0.69	4.21	4.28	0.68	1.28	1.28

が成り立つとしている。

そこで,本研究においては橋梁の振動数範囲を考慮し て,振動数の異なる2つの正弦波を合成した複合正弦振 動に対する感覚と等しい大きさの感覚を与える単正弦振 動を見つけ出す実験を行った。単正弦波の振幅は複合正 弦波の成分の1つと同じ振幅から0.1倍刻みで3倍まで 21 点の振動を用意し、合成振動・単正弦振動の順に交 互に提示し感覚的等価点を求めた。用意した複合正弦波 の振動数・振幅と等価させた単正弦波の振動数を表一3 に示した。この実験においては姿勢により異なった結果 が予想されたので弛緩した立位・歩行位の両姿勢でそれ ぞれ11人の被験者に対し各2回ずつ計22回行った。そ れらの結果を対数平均した振幅を表一3 の A_s , A_w の欄 に示した。これらの結果において荷重加算法が成り立つ とはいえない。ところが, 実際には振動が合成されたも のであるために、その刺激の大きさはそれぞれの二乗和 の平方根と考え,等価である正弦振動の刺激と比較する と表一3に示したように類似した値となる。これは次の ことを示している。すなわち,振動の刺激として考えら れる量の二乗和の平方根を求めれば、その振動に対する 心理的大きさを求めることができる。

(3) 振動恕限度の検討

(1),(2)では、橋梁の振動が人間に及ぼす心理的反応の評価尺度を検討するための計量化に関する実験、およびランダム振動に対する実験の結果から、評価尺度が構成されることを述べた。振動による心理的反応において、もう1つ重要なことに振動の大きさによってどのような感じを持つかがある。これを調べるために用いられる1つの心理学的手法には通常、系列カテゴリ法^{\$1,\$0} (Method of successive categories)とよばれる一種のアンケート調査がある。この手法は、前もって数段階のカテゴリを用意し、種々の振幅と振動数とを組合せた振動を受けたとき、被験者がどのカテゴリに属する感じを


図─7 各カテゴリの刺激量と評定率 (○の中の数字はカテゴリ番号を示す)

持つかを調べるものである。

この調査のうち、弛緩した立位における結果はすでに報告がした。 今回は特に歩行位においてどのような感じを持つかについて調査した。立位では"不快"を主に考えたのに対し、歩行位では"歩きにくい"というカテゴリを主に考え、表一4のようなカテゴリを用意した。実験は11人の被験者に対し各3回ずつ計33回の測定を行い、その結果を次のように整理した。まず、(1)に示した尺度により歩行位の場合には振動の刺激として振動速

表一4 歩行時のカテゴリと閾値

Category	0	Lower limit(cm/sec)		
No.	Content of Category	Peak Value	RMS Value	
0	全く感じない(Not perceptible)	-	_	
1	少し感じた (Lightly perceptible)	0.6	0.42	
2	明らかに感じた (Definitely perceptible)	1.2	0.85	
3	少し歩きにくい (Lightly hard to walk)	2.4	1.7	
4	大いに歩きにくい (Extremely hard to walk)	3.8	2.7	

度を採用するのが適切であることがわかったので、振動速度と各カテゴリの評定率(各振動に対し、感じがそのカテゴリに属していると答えた百分率)との関係を求めると図-7 のようになる。そこで、計量心理学上の閾値の定義(反応が起きる確率が 50% の刺激値)により、各カテゴリの閾値を求めると表-4 に示す値となる。これらの閾値を図-8 の実線(@~@)で示した。なお、図-8 には弛緩した立位における不快の閾値 3 (RMS 値)を 3 (RMS 位)を 3

以上,橋梁振動が歩行者に及ぼす心理的影響を評価するために必要なさまざまな心理実験とその結果について述べてきた。

5. 橋梁振動の評価法

各節で述べてきたように橋梁の振動によって人間が受ける影響は多様である。しかし、生理的影響は通常の橋梁振動においては小さく、それほど問題にならないであろう。また、歩行位において人体には共振現象が認められないことや高い振動数範囲においては振動がそれほど

上体に伝達されないことなどから、人体の動的応答はそれほど問題でないといえる。それに、心理的反応の実験結果にはそれらがすでに加味されていると考えてよいであろう。したがって、橋梁の振動が人間に及ぼす影響は現在のところでは心理的な反応のみを考慮すれば十分であろう。そこで、4. で得られた心理評価尺度によって橋梁振動を評価する方法について考えてみた。

(1) 振動の刺激

橋梁上で立ち止まることは比較的少ないために、歩行者の歩行位における振動感覚を対象に考えるならば、振動の刺激として振動速度を考えるのが妥当であろう。そこで、実際の記録から振動刺激としての振動速度を求める方法を考えてみた。

スペクトル解析などのデータ処理の手法により波形に含まれる周波数 (f_i) とそれに対応する実効値 (σ_i) が求められている場合には,それぞれの速度成分の実効値を考えればよいことから,次のようにして振動の刺激 (S) を求めればよい。

a) 波形が変位記録である場合

$$S = \left\{ \sum_{i=1}^{M} (\sigma_{di} \cdot 2 \pi f_i)^2 \right\}^{1/2} \quad \dots (9)$$

b) 波形が速度記録である場合

$$S = \left\{ \sum_{i=1}^{M} \sigma_{vi}^{2} \right\}^{1/2} \dots (10)$$

c) 波形が加速度記録である場合

$$S = \left\{ \sum_{i=1}^{M} (\sigma_{ai}/2 \pi f_i)^2 \right\}^{1/2} \dots (11)$$

ここに、 σ_{di} :変位の実効値 (cm)

σ_{vi}:速度の実効値 (cm/sec)

σai:加速度の実効値 (cm/sec²)

M: 周波数成分の個数

スペクトル解析などにより周波数分析ができないとき は振動を速度計で測定し実効値を求めるのがよい。

また,実効値が求められないが周波数成分が1っだけであることが確かめられている場合には,波形の最大振幅の1/3を実効値と考えれば一応の近似を与えるであろ 5^{12} 。

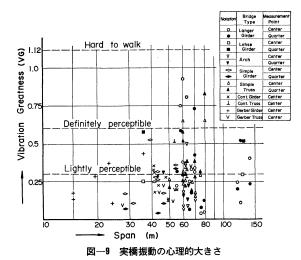
(2) 振動の大きさ

振動の刺激を求めることができたので心理的な振動の大きさ(VG)を求める。この VG は式 (6) で示されるが、式 (6) を用いるためには振動の大きさのレベル(VGL)と定数 B を求めねばならない。そこで、本研究においては騒音評価に使う「 $Phon_{\perp}$ 「 $Sone_{\perp}$ 」や三輪らの提案する「 VGL_{\perp} 「 VG_{\perp} 」と同様に、刺激と感覚の大きさとの関係において、2本の近似線が交わる点でVGLが 40 dB となり、しかも VG が 1.0 になるようにし

表-5 振動の大きさ換算表

Category	Stimulus	VGL	VG
	0.45	30.2	0.32
	0.50	31.1	0.36
	0.55	31.9	0.39
	0.60	32.6	0.43
Lightly perceptible	0.65	33.3	0.46
	0.70	34.0	0.50
	0.75	34.6	0.54
	0.80	35.1	0.57
	0.85	35.7	0.61
	0.90	36.2	0.64
	0.95	36.6	0.68
	1.00	37.1	0.71
	1.05	37.5	0.75
	1.10	37.9	0.79
	1.15	38.3	0.82
	1.20	38.7	0.86
Definitely perceptible	1.25	39.0	0.89
	1.30	39.4	0.93
	1.35	39.7	0.96
	1.40	40.0	1.00
	1.45	40.3	1.02
	1.50	40.6	1.04
	1.55	40.9	1.06
	1.60	41.2	1.08
	1.65	41.4	1.10
	1.70	41.7	1.12
	1.75	41.9	1.14
	1.80	42.2	1.16
	1.85	42.4	1.18
	1.90	42.7	1.20
	1.95	42.9	1.22
Lightly hard to walk	2.0	43.1	1.24
	2.1	43.5	1.28
	2.2	43.9	1.31
	2.3	44.3	1.35
	2.4	44.7	1.38
	2.5	45.0	1.42
	2.6	45.4	1.45
	2.7	45.7	1.48
	2.8	46.0	1.52
	2.9	46.3	1.55
	3.0	46.6	1.58
	3.2	47.2	1.64
	3.4	47.7	1.70
Distriction hand to a colle	3.6	48.2	1.76
Extremely hard to walk	3.8	48.7	1.82
	4.0	49.1	1.88
	4.2	49.5	1.93
	4.4	49.9	1.99
	4.6	50.3	2.04
	4.8	50.7	2.10
	5.0	51.1	2.15

 となる。式 (12),(13),(14) で示される振動の刺激 S(歩行位では振動速度)と振動の大きさの レベル(VGL),振動の大きさ (VG) を換算表としたものが $\mathbf{表-5}$ である。この VG を比較することにより橋梁の 振動を心理的な大きさによって判断することができる。すなわち,橋梁の振動が人間に及ぼす心理的な影響を調べるためには従来のような実験あるいは計算によって動的応答を求め,その振動速度の実効値を算出し, $\mathbf{表-5}$ によって振動の大きさ (VG) を求めれば,VG が心理的大きさを表わしていることになる。


(3) 橋梁振動の恕限度

さて、橋梁においてどの程度の大きさの振動まで許されるか、を考えてみる。 橋梁に はさまざまな用途があり、一様にこの種の振動制限を設けるべきではなかろう。歩行者専用の歩道橋では特に厳しくしなければならないであろう。そこで、歩行者の 通る 道路橋における一応の目安として、通常頻繁に生ずるような振動注1)によって歩きにくくないようにすべきである。 そのためには振動速度の実効値を 1.7 cm/sec(図—8 の⑥、VG 値で 1.12) 未満とするのが望ましい。 この値以下にすれば 図—8 の⑥と⑤が近接していることから歩行者が立ち止まったとしても不快さはほとんど感じないであろう。そして、この恕限度は B.S.¹¹⁾ の振動制限注2)に近い値であり、(4) で述べるように比較的容易に達成できる値と思われる。

(4) 実在道路橋の振動評価

以上,述べてきた評価法によって実在道路橋の振動 3), 12) を心理的大きさから評価してみた。図 $^{-9}$ には実在道路橋の支間長と振動の大きさ(VG)と を橋梁形式をパラメーターにして示した。ここで示した振動は空車重量が約 10 トンと考えられる大型バスあるいは大型ダンプカーによってひき起こされたもの で ある。 図中,VG が 1.12 の破線は本研究において提案する道路橋の振動恕限度である。図示したように 10 トン車通過時にはこの制限を越える橋梁はないが, 20 トン 車通過時には越えることが予想される。また,VG が大きい橋梁形式にはランガー桁橋が目立ち,今後,この種の橋梁は設計において補剛桁の高さや吊材の配置などに十分な配慮

- 注 1) 通常頻繁に生ずる振動とは、車両などの載荷確率および それらによる動的応答計算によらねばならないが、道路 橋では 20 トン車1台の車両通過に伴う振動程度と考え られる。
- 注 2) BS の振動制限は「20トン車の通過に伴い生ずる振動最大速度を√5 inch/sec 以下にするのが望ましい」としている。最大値であるため実効値をその 1/3 とする¹²⁾ と、この制限はほぼ 1.86 cm/sec 程度と考えられる。

をし,振動をできるだけ小さくする努力が要求される。

6. む す び

本研究は、従来の橋梁設計において全く考慮されていない橋梁の振動が歩行者に与える影響について検討したものである。その影響の中でも特に大きいと考えられる心理的な反応については、従来と異なった心理学的手法を用いて同様な評価尺度を求め、従来どおり振動量を測定すれば心理的大きさが計算できることを示すとともに道路橋の振動恕限度を提案した。

この研究では 1~10 Hz の上下振動を対象に行ったもので、今後、長大支間の橋梁において問題になるであろう低い振動数の振動や横方向の振動に対する検討も加えれば、さらに興味ある結果が得られると思う。

終りに、本稿をまとめるに当り、助言をいただいた金沢大学医学部公衆衛生学教室 岡田 晃教授に深謝の意を表わします。また、本研究の実験についても協力いただいた金沢大学の城戸隆良技官と同橋梁工学研究室の学生諸氏に感謝いたします。なお、本研究の一部に文部省科学研究費の援助を受けたことを付記する。

参考文献

- Wright, R.N. and Walker, W.H.: Vibration and Deflection of Steel Bridges, A.I.S.C. Engineering Journal, 1972
- 三輪・米川:振動の評価法 1,2,3,日本音響学会誌 27 巻 1 号, 1971
- 3) 小堀・梶川:道路橋の振動とその振動感覚, 土木学会論 文報告集第 222 号, 1974
- 4) Goldman, D.E. and von Gierke, H.E.: Effects of shock and vibration on man, In shock and vibration Handbook, Edited by Harris, C.M. and Grede, C.E. (Vol. Ⅲ), McGraw Hill, 1961
- Roth, E.M. and Chambers, A.N. 著,佐々木・山崎訳: 人間一環境系人間機能ハンドブックーVI章 振動,人間と 技術社,1972
- 6) 岡田:全身振動による影響・障害,労働科学 41 巻 1 号, 1965
- 7) 岡田・中村:騒音・振動・衝撃の影響と 対策, 人間と技術社, 1970
- 8) 岡田:振動の生体に及ぼす影響第3編,北方産業衛生第 17号,1958
- 9) 中谷:尺度構成法,講座心理学2 計量心理学第5章,東京大学出版会,1969
- 10) 守田:騒音と騒音防止,オーム社,1961
- 11) British Standards Institution: Composite Construction in Structural Steel and Concrete Part 2 Beams for Bridges C P 117, Appendex A, 1967
- 12) 小堀・梶川:道路橋の振動調査に ついて, 土木学会中部 支部研究発表会,1974

(1974.2.28・受付)