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Abstract-Parametric studies on cable-stayed bridges are performed in the paper for investigating the 
individual influence of different sources of nonlinearity in such bridges. The sources of nonlinearity in the 
cable-stayed bridge mainly include the large deflection, beam<olumn and cable sag effects. The influence 
of such kind of effects on the analysis and the structural behavior of cable-stayed bridges has been 
detailedly examined in the study. A finite element procedure for the nonlinear analysis of cable-stayed 
bridges 1s first set up, and then detailed parametric studies for the initial shape analysis and static deflection 
analysis of such bridges are carried out. The numerical results show that in the Initial shape analysis the 
cable sag effect is most important and the other two effects are insignificant. However, in the static 
deflection analysis of cable-stayed bridges the large deflection effect plays the key role, the beam-column 
effect is also significant but minor than the large deflection effect and the cable sag effect becomes the least 
important one. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

The concept of supporting a bridge deck by inclined 
tension stays can be traced back to the seventeeth 
century, but rapid progress in the analysis and con- 
struction of cable-stayed bridges has been made over 
the last 30 years. This progress is mainly due to the 
developments in the fields of computer technology, 
high strength steel cables and box-girders with ortho- 
tropic steel decks. Since the first modern cable-stayed 
bridge was built in Sweden in 1955, their popularity 
has rapidly been increasing all over the world [l-3]. 
Because of its aesthetic appeal, economic grounds 
and the ease of erection, the cable-stayed bridge is 
considered as the most suitable one for medium to 
long span bridges with spans ranging from 200 m to 
about 1000 m. In the recent study of Gimsing [4], it 
is concluded that with new design concepts, e.g. twin 
girder systems, multi-cable planes and partial earth 
anchoring of the cable systems, the cable-stayed 
bridge should be seriously considered as an alterna- 
tive to the suspension bridge system for even the most 
extreme spans, e.g. 3200m. A cable-stayed bridge 
consists of three principal components, namely 
girders, towers and inclined cable stays. The girder is 
supported elastically at points along its length by 
inclined cable stays so that the girder can span a 
much longer distance without intermediate piers. The 
dead load and traffic load on the girders are trans- 
mitted to the towers by inclined cable stays. Since the 
span is large and the cable stays are long and under 
high pretension force action, the nonlinearities due to 
cable sag, compression effect in towers and girders 
and large deflections have to be taken into account. 
As a result of this the analysis of cable-stayed bridges 
is becoming very complicated. The purpose of this 

paper is to present the efficient computational algor- 
ithm for finding the initial shape of cable-stayed 
bridges under the action of the dead load of girders 
and pretension forces in inclined cables, and for the 
static deflection analysis under live load action. Para- 
metric studies are performed for investigating the 
individual influence of the different sources of non- 
linearity on the behavior of cable-stayed bridges. 

2. NONLINEARITIES OF CABLE-STAYED BRIDGES 

The sources of nonlinearity in cable-stayed bridges 
mainly include the cable sag, beam-column and large 
deflection effects. They will be briefly explained in the 
following. 

(1) Cable sag effect 

The inclined cable stay of cable-stayed bridges is 
generally quite long and it is well known that a cable 
supported at its end and under the action of its own 
dead load and axial tensile force will sag into a 
catenary shape, see Fig. 1. The axial stiffness of a 
cable will change with changing sag. When a straight 
cable element for a whole inclined cable stay is used 
in the analysis, the sag effect has to be taken into 
account. On the consideration of the sag nonlinearity 
in the inclined cable stays, it is convenient to use an 
equivalent straight cable e’lement with an equivalent 
modulus of elasticity, which can well describe the 
catenary action of the cable. The concept of a cable 
equivalent modulus of elasticity was first introduced 
by Ernst [5]. 

If the change in tension for a cable during a load 
increment is not large, the axial stiffness of the cable 
will not significantly change and the cable equivalent 



Pao-Hsll Wang and Chiung-Guel Yang 244 

Y* 

constant 

“, : Element Coordinates 

q_ : System Coordmates 

x. y Local Coordinates System 

X,Y : Clobd Coordmates System 

01 
x 

Fig. 1. Cable element with sag. 

modulus of elasticity can be considered 
during the load increment and is given by 

E 
Em, = 

1 + (wL12AE 
12T’ 

in which Ees = equivalent cable modulus of elasticity, 
E = effective cable material modulus of elasticity, 
A = cross-sectional area, w = cable weight per unit 
length, L = horizontal projected length of the cable 
and T = tension force in the cable. The cable equiv- 
alent modulus of elasticity combines both the effects 
of material and geometric deformation. The value of 
the equivalent modulus is dependent upon the weight 
and the tension in cable. Hence, the axial stiffness of 
the equivalent element combining cable sag and cable 
tension determined by the above equation is the same 
as the axial stiffness of the actual cable. 

When the sag effect exists and the inclined cable 
stay is represented by a single equivalent straight 
cable element with one coordinate (relative axial 
deformation) U, = AI, see Fig. 1, the stiffness matrix 
KE,, of the cable element has the value as follows: 

KE,, = [KE] = 
, foru,>O 

for U, < 0, 

where 1 = cable element length. The cable stiffness 
vanishes and no element force exists for U, < 0, 
i.e. when shortening occurs. 

(2) Beam-column effect 

Since a high pretension force exists in inclined cable 
stays, the towers and part of the girders are subjected 
to a large compression action; this means that the 
beam-column effect has to be taken into consider- 
ation for girders and towers of the cable-stayed 
bridge. In a beam-column, lateral deflection and 
axial force are interrelated such that its bending 
stiffness is dependent on the element axial forces, and 

the presence of bending moments will affect the axial 
stiffness. The element bending stiffness decreases for 
a compression axial force and increases for a tension 
force. The beamxolumn effect can be evaluated by 
using the stability functions [6, 71. The plane beam- 
column element shown in Fig. 2 is utilized in this 
study. It has three element coordinates, two for end 
rotations, u,, u2 and one for the relative axial defor- 
mation u3 = AI, where AI is the element axial 
elongation or shortening. The element forces corre- 
sponding to u, are denoted by S, in which S, and S2 
are the end moments and S, is the axial force. 

When the beamxolumn effect has to be taken into 
consideration, the beamxolumn element stiffness 
matrix has the following form [6,7] 

where E = modulus of elasticity, A = cross-sectional 
area, I = moment inertia of the cross-sectional area 
and 1 = element length. The stability function C,, C, 
and R, can be expressed m terms of the element axial 
force S, and the end moments S, and S, as follows: 

(i) For a compressive axial force, S, < 0 

c = J[sin(J) - J cos(/)] 

’ 2 - 2 cos(J) - J sin(J) 

c, = 
J[J - sin(J)] 

2 - 2 cos(J) - J sin(J) 

1 
R, = 

EAR,, ’ 
1-p 

4S’P 3 

where 

U, : Element Coordinates 
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Fig. 2. Plane beam+olumn element. 
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&m = J(S: + Si)[cot(J) + J C&(J)] - 2(S, + S,)* 3. NONLINEAR FINITE ELEMENT FORMULATION 

+ (S, S,) [ 1 + J cot(J)] [2J csc(J)]. 

(ii) For a tensile axial force, & > 0 

Based on the finite element concept, a cable-stayed 
bridge can be considered as an assembly of a finite 
number of cable, beamcolumn (for girder and 
tower) elements. In this study some assumptions are 
made as follows. The stress-strain relationship of all 

c = J[cosh(J) - J sinh(J)] material always remains within a linear elastic range 

’ 2 - 2 cash(J) - J sinh(J) during the whole nonlinear computation. The cross- 
sectional area of the elements remains unchanged 

c, = 
J[sinh(J) -J] during deformation. The cable element is assumed to 

2 - 2 cash(J) + J sinh(J) 
be perfectly flexible and possesses only tension stiff- 
ness; it is incapable of resisting compressive, shear 

1 
Rt = 

, _ EAR,, ’ 
4.9~12 3 

where 

J= !%![ 

d- El 

R,, = J(S; + S;)[coth(J) + J cosh2(J)] 

- w,+~2)2+(s,~2) 

and bending forces. For the beam element, the engin- 
eering beam theory is employed and no shear strain 
is considered. All cables are fixed to the tower and 
to the girder at their joints of attachment. In the 
following analysis the nonlinearities induced by 
beam-column, cable sag and large displacement 
effects will be taken into account, but all materials 
behave linearly and elastically. 

3.1. General system equation 

The general system equation for a finite element 
model of structural systems in nonlinear static analy- 
sis can be derived from the virtual work principle and 
have the following form [8]: 

x [1 + J coth(J)][2J cash(J)]. K’.h”-cS,a,,=O m = 1,2,.. .,N DOF, (1) 
EL 

When the beamcolumn effect is not considered, where 

the element stiffness matrix KE,, of a beam-column 
element has the linear form as usual as hZ = E = basis vector, 

aqZ 

42 0 

KE,k=[KE]=y 2 4 0 

[ 1 

au 
. a,Y = I= transformation coefficients, 

a42 
0 0 A/I 

(3) Large displacement effect 

P, = K’ Va = generalized external forces, 

In general, cable-stayed bridges have a larger span 
and less weight than that of conventional steel and 
reinforced concrete bridges. Large deflections may 
easily appear in cable-stayed bridges. Hence, the large 
displacement effect has to be considered in the analy- 
sis and the equilibrium equations must be set up 
based on the deformed position [8,9]. 

In the present study the motion of structural 

T, = z S,a,, = generalized internal forces, 

K’ = external nodal load vectors, 

WJ = displacement vectors corresponding to K, 

S, = KE,, uk + Sp = generalized element forces, 

elements during large deflections is described by the 
S,” = generalized initial element forces, 

exact tranformation coefficients a,ol that relate the 
local element coordinates u, and the global system 

u, = generalized element coordinates, 

coordinates q.. The nonlinear transformation co- qz = generalized system coordinates, 
efficients of the first-order and the second-order, a,# 

and a,,,, for the straight cable element and the KE,, = element stiffness matrix, 
beam-column element can be found in Refs [8, lo]. 
With the help of the nonlinear transformation co- E = summation over all elements, 

efficients a,, and a,,,, the tangent system stiffness 
EL 

matrix will be built up with the standard procedure and 
by assembling the element stiffness matrices (see the 
next section). N = number of degree of freedom (DOF). 
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The superscript j denotes the nodal number. The 
subscripts CC, & y, . denote the number of system 
coordinate and j, k, I,. . the number of element 
coordinate. The index summation convention is used 
here for the superscripts and subscripts. The letters 
printed in bold-face type e.g. K’, I$, represent vectors. 
The dot notation between vectors means scalar 
product. In the analysis of cable-stayed bridges, the 
material behaves linearly elastic and the deflection is 
large, but with small strain. In eqn (1) W’, a,,, u, may 
be nonlinear functions of the system coordinates qz 
when large deflections occur and the nodal load 
vectors K may also become function of q., if they are 
not displacement independent. Equation (I) repre- 
sents a set of nonlinear algebraic equations and can 
be solved by the load increment methods or the 
iteration methods. 

3.2. Linearized system equation 

For the sake of incrementally solving the large 
deflection problem, the linearized system equation 
has to be derived. By taking the first order of the 
Taylor’s expansion of the general system eqn (l), the 
linearized system equation for a small load interval is 
obtained as follows: 

AP; + .P; = =K;@. Aq; for Pi < P, < P:+ ‘, (2) 

where 

Ap;=p;+‘- PI: = load increments, 

Aq; = q;+ ’ - q: = displacement increments, 

.Pz = Pz - 2 S;ap = unbalanced forces in statics, 
EL 

_ “K/.“w 
%B 

_.,j.“k 
1 

= tangent system stiffness matrix, 

= transformation coefficients of second-order, 

The superscript n denotes the number of load step 
and the number 2 represents an iteration matrix of 
the second order. It is well known that a pure incre- 
ment computation will bring larger numerical errors. 
An increment-iteration computation procedure is 
recommended in order to obtain more accurate 
solutions. 

4. ANALYSIS OF CABLE-STAYED BRIDGES 

4.1. Initial shape analysis 

High tension forces exist in cable stays which 
induce high compressive forces in towers and part of 
the girders. Since a high pretension force exists in 
inclined cable stays before live loads are applied, the 
initial geometry and the prestress of cable-stayed 
bridges are dependent on each other. They cannot be 
specified independently as conventional steel or re- 
inforced concrete bridges. Therefore the initial shape, 
i.e. the geometric configuration and the prestress 
distribution of cable-stayed bridges, has to be deter- 
mined prior to analyzing them. The initial shape of 
a cable-stayed bridge provides the geometric 
configuration as well as the prestress distribution of 
the bridge under the action of the dead load of girders 
and the pretension force in inclined cable stays. The 
relation for the equilibrium conditions, the specified 
boundary conditions, and the requirements of archi- 
tectural design should be satisfied here. For the 
following shape finding computation, only the dead 
load of girders is taken into account and the dead 
load of cables and towers are neglected, but cable sag 
nonlinearity induced by cable dead load is included. 
The computation for shape finding starts with a given 
small tension force in inclined cable stays. Based on 
a reference configuration (the architectural designed 
form) having no deflection in girders and zero pre- 
stress m any element, the equilibrium position of the 
cable-stayed bridge under dead load action is first 
determined iteratively by the Newton-Raphson 
method. Although this first determined configuration 
satisfies the equilibrium conditions and the boundary 
conditions, the requirements of architectural design 
are generally not fulfilled. Since the bridge span is 
large and small tension forces exist in inclined cables, 
quite IargL deflections and very large bending 
moments may appear in the girders. 

Therefore, a shape iteration has to be carried out 
m order to reduce the deflection and to smooth the 
bending moments in the girder. For shape iteration, 
the axial force of all cable and beam<olumn elements 
determined in the previous step will be taken as initial 
element forces and the equilibrium configuration 
under the action of dead load and such initial forces 
will be determined anew. During shape iteration 
several control points (nodes intersected by the girder 
and the cable) will be chosen for checking to see if the 
convergence tolerance is achieved or not. In each 
shape iteration the ratio of the vertical displacement 
at control points to the main span length will be 
checked, i.e. 

vertical displacement at control point 

main span < t, 

The shape iteration will be repeated until the 
convergence tolerance c,, say 10m4, is achieved. 
Numerical experiments show that the iteration 
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4.3.2. Static deflection analysis. 

(1) Input the geometric and physical data of the 
bridge. 

computation converges monotonously. When the 
convergence tolerance for shape iteration is reached, 
the computation will be stopped and the initial shape 
of the cable-stayed bridges is found. A brief summary 
of the algorithm for shape finding is given in the 
Section 4.3.1. The details of such a shape finding 
procedure is referred to Wang et al. [lo]. 

4.2. Static de$ection analysis 

Based on the determined initial shape, the non- 
linear static deflection analysis of cable-stayed 
bridges under the live load action can be performed 
incrementwise or iterationwise. It is well known that 
the load increment method leads to large numerical 
errors. The iteration method would be preferred to 
use for the nonlinear computation and a desired 
convergence tolerance can be achieved. The Newton- 
Raphson iteration procedure will be employed in the 
study. 

(2) Input the initial shape data including initial 
geometry and initial element forces. 

(3) Input the dead and live loads. 
(4) Solve the system equation in increment- 

iteration approach. 

(i) Calculate the element stiffness matrices 
for the cable including sag effect and for the 
beam-column. 

For nonlinear analysis of large or complex struc- 
tural systems, a “full” iteration procedure (iteration 
performed with a singe full load step) will often fail. 
An increment-iteration procedure is highly recom- 
mended, in which the load will be incremented and 
the iteration will be carried out in each load step. The 
computaton of nonlinear deflection analysis will be 
performed with the increment-iteration procedure in 
this study. The following static deflection analysis of 
the cable-stayed bridge in different cases will be 
started from the “exact” initial shape determined by 
the previously described shape finding procedure, 
including all the three nonlinearities in the cable- 
stayed bridge. The algorithm of the static deflection 
analysis of cable-stayed bridges is summarized in 
Section 4.3.2. 

(ii) Calculate the transformation coefficients 

a,% 3 a,, . 
(iii) Set up the tangent system stiffness 

matrix 2Kn aS. 
(iv) ‘Solve the linearized system equation to 

find the equilibrium configuration. 
(v) Equilibrium iteration (Newton-Raphson 

approach) is performed as follows: 

l After solving the linearized system equations: 

AP”, + .P: = 2K:fl. Aq;, 

Aq; is found. 
0 Set i = 0, 

and 

4.3. Computation algorithms of the cable-stayed 
bridge analysis 

The algorithms for shape finding computation and 
for static deflection analysis of cable-stayed bridges 
are briefly summarized in the following. 

Il”‘Aq; II < ~ 
Par’ 

(convergence tolerance) 

then 

4.3.1. Initial shape analysis. 
(1) Input the geometric and physical data of the 

bridge. 

q”s+ I = (I+ uqi;, 

and begin next load step, 
else i = i + 1, and solve 

(2) Input the dead load of girders and a small 
initial force in cable stays. 

(3) Equilibrium iteration is performed by using the 
Newton-Raphson Method (see Section 4.3.2) 

(4) Shape iteration 
with 

(i) Check if the convergence tolerance 

vertical displacement at control point 

main span 
G Es 

and repeat convergence tolerance check. 
l Determine the element deformations and the 

element forces. 

is achieved or not. 
(ii) If convergent, then the equilibrium 

configuration is the desired initial shape else 
take the determined axial forces as initial 

5. PARAMETRIC STUDIES 

element force and repeat steps 3 and 4. 

The parametric studies made in the paper are 
focused at investigating the individual influence of the 
three different sources of nonlinearity, i.e. cable sag, 



248 Pao-Hsii Wang and Chiung-Guei Yang 

beam-column and large deflection, on the behavior 
of cable-stayed bridges. In the following study the 
solution computed, including all three nonlinearities, 
will be considered as the “exact” solution and serve 
as the standard basis for comparisons. The approxi- 
mate solutions determined by neglecting one of these 
three nonlinearities will carefully be compared with 
the “exact” solution in order to investigate the influ- 
ence of such neglected nonlinearity on the bridge. 
Four cases of approximate solution are considered in 
each example studied in Section 6, i.e. 

case 1: neglecting cable sag effect (no sag) 
case 2: neglecting beamcolumn effect (no B-C) 
case 3: neglecting large deflection effect (no L-D) 
case 4: linear case, neglecting all the three nonhn- 

earities (linear). 

In cases 1-3 only one kind of nonlinearity is 
neglected and the other two nonlinearities are taken 
into account in the analysis. Case 4 is the linear case, 
in which all the three nonlinearities are neglected and 
the computation is performed in a pure linear analy- 
sis, i.e. the linear elastic element stiffness matrices and 
linear coordinate transformation coefficients are used 
in the analysis and no equilibrium iteration is 
required. For the initial shape analysis all the compu- 
tations are started from an architectural designed 
reference configuration of the cable-stayed bridge, 
i.e. no deflection and no prestress exist in the bridges 
prior to the analysis. The initial shape is found when 
the convergence tolerances for both the shape iter- 
ation and the equilibrium iteration are achieved. In 
the linear case (case 4) the equilibrium iteration is not 
required, but the shape iteration is performed. 

After the initial shape is found, the static deflection 
analysis can be carried out. For the sake of com- 
pansons the “exact” initial shape determined by 
including all the three nonlinearities is used for the 
static deflection analysis of all cases. Similarly, the 
deflection solution including all nonlinearities is 
considered as the “exact” solution and serves as the 
basis for comparing the approximate solutions. 

6. NUMERICAL EXAMPLES 

Three different types of the cable-stayed bridges are 
taken from the literature. In the following analysis 
the finite element model of the cable-stayed bridge is 
idealized by using the cable element with sag shown 
in Fig. 1 and the beam-column element shown in Fig. 
2 and each member located between two nodes is 
considered as an element. The initial shapes will first 
be determined by the previous described shape find- 
ing procedure. Then, based on the initial shape the 
deflection analysis of cable-stayed bridges under 
live loads is performed in increment-iterationwise. 
Herein a convergence tolerance c = 10m4 is used for 
both the equilibrium iteration and the shape iter- 
ation. During the shape iteration the axial forces of 

all members of the cable-stayed bridge determined in 
the previous step will be taken as the initial element 
force for the next shape iteration. It is different from 
that made in Ref. [lo], where only the cable forces are 
used as initial element forces for shape iteration. 
Parametric studies for the initial shape analysis and 
the static deflection analysis of cable-stayed bridges 
are performed in each example to investigate the 
individual influence of the nonlinearities, such as 
cable sag, beamcolumn and large displacement 
effects, on the structural behaviors. The solution 
determined with including all the three nonlinearities 
is considered as the “exact” solution. Based on the 
“exact” solution the approximate solutions will be 
compared. The approximate solutions are determined 
by the same computational procedure, but neglecting 
one of the three major nonlinear effects, e.g. neglect- 
ing the cable sag (case 1: no sag), the beamcolumn 
(case 2: no B-C) or the large displacement (case 3: no 
L-D). A linear analysis (case 4: linear) excluding all 
of the three nonlinearities is also carried out for the 
sake of comparison in all the examples. 

6.1. Unsymmetrical cable-stayed bridge 

This unsymmetrical cable-stayed bridge is taken 
from Refs [I 1, 121. Its geometrical form and physical 
properties are shown in Fig. 3. The initial shape of the 
unsymmetrical cable-stayed bridge is first determined 
by the previously described algorithm and by taking 
all the nonlinearities into account. The shape iter- 
ation control point is chosen at node 3. Until the 
initial shape is found, four shape iterations are per- 
formed and in each shape iteration five to six cycles 
in the equilibrium iteration are required. The final 
geometric configuration and the element forces of the 
initial shape are listed in Table 1. The pretension 
forces in cables between nodes 3-5 and 5-10 are 
10,010 and 12,043 kips, respectively. The vertical 
displacement has only 0.018 ft at the control point 
node 3 and 0.872 ft, 0.4Oft at nodes 2 and 4. The 
maximum positive and negative bending moment 
occurs at nodes 2 and 3 and have the value of 44,396 
and - 7 1,20 1 kips-ft, respectively. The mitial shape is 

I-_-zoo ft-+-200 ft+lMn+lmn_i 

modulus of elasticity E=4.000.000 ksf 

girder - 1=45.0 it’ ; A=&0 ft’ 

tower - above girder: I= 20 ft’ ; A= 3 ft’ 

below girder: I=200 ft’ : A=10 ft’ 

cable - A=l.l it* 

dead load - girder W=l8.0 kips/ft 

cable W= 0.3 Lips/It 

Fig. 3. Unsymmetric cable-stayed bridge. 
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determined again by different approximations (cases 
14). In this example four shape iterations are re- 
quired in all cases. The displacements and cable 
forces determined with different approximations 
during shape finding are listed in Tables 2-6 and 
plotted in Fig. 4. From the results it is obviously seen 
that only the cable sag effect exhibits a significant 
difference at the initial stages of shape finding and 
becomes insignificant at the final stage NSI = 4 
(NSI = number of shape iterations). The approxi- 
mate solutions of all cases have good agreement with 
the exact solution at the final stage. The pretension 
force in cable elements of all the approximate sol- 
utions of the initial shape has almost the same value 
of the exact solution, and has only an error under 
0.1% in this example. 

For the static deflection analysis a vertical concen- 
trated load P applied at the node 2 is considered. The 
load-displacement curves and the load-element force 
curves are plotted in Fig. 5. From the figures it can 
be seen that the linear analysis becomes meaningless 
and the cable sag effect is insignificant in the deflec- 
tion analysis. The beamcolumn effect has a signifi- 
cant influence, since the axial force of members 
has a large value and increases when the deflection 
increases. The large-deflection effect becomes more 
important when the deflection becomes large. The 
convergence difficulty occurs in this example, when 
the deflection analysis is performed with neglecting 
the large-deflection effect. The occurrence of the 
convergence difficulty is denoted by DIV in Fig. 5. 

seven cycles of equilibrium iteration in each shape 
iteration are performed. The convergence in this 
study is much better than that made in Ref. [lo], since 
the axial forces of all members, instead of only cable 
forces, of the bridge determined in the previous step 
are taken as the initial element forces for the next 
shape iteration computation. Four shape iterations 
were needed in Ref. [lo]. The final geometric 
configuration and the element forces of the initial 
shape of the symmetric harp cable-stayed bridge are 
listed in Table 7. After shape iterations the cable 
forces converge to 2023, 2361 and 2547 kips in the 
cable element between the nodes 34, 65 and 9-10, 
respectively. The vertical deflection at nodes 4, 5 and 
10 (control points) converge to -0.071 ft, -0.11 and 
0.01 ft, respectively. The vertical displacement at node 
11 (mid-span) is 0.12 ft. The maximum positive and 
negative bending moments in girder are 14,067 kips-ft 
at the node 11 and - 16,665 kips-ft at the node 10. 

6.2. Symmetric harp cable-stayed bridge 

This symmetric harp cable-stayed bridge is taken 
from Refs [l 1, 131. Its geometrical and physical prop- 
erties are given in Fig. 6. Its initial shape is also first 
determined by the previous described algorithm and 
by taking all the nonlinearities into account. The 
shape iteration control points are chosen at nodes 4, 
5 and 10. Three cycles in shape iteration are needed 
until the convergence tolerance is achieved and five to 

The initial shape analysis is repeated for different 
approximations. In the initial shape analysis of this 
example three shape iterations have been performed 
in case 2, case 3 and the case of exact solution. Only 
two shape iterations are required in cases 1 and 4. The 
nodal displacements and cable forces of different 
cases are listed in Tables 8-12 and plotted in Fig. 7. 
Similar to example 1, neglecting cable sag effect 
exhibits a significant deviation from the correct value 
only at the initial stages of shape finding. All the 
approximate solutions agree well with the exact sol- 

ution at the final stage (NSI = 3) of shape finding. 
The cable forces determined in case 2 (no B-C) and 
case 3 (no L-D) have almost the same value of the 
exact solution and little difference in cable forces 
(about 2-13%) exists in case 1 (no sag) and case 4 
(linear). 

For the deflection analysis, the loaddisplacement 
curves and the load-element force curves of each case 
are plotted in Fig. 8. The results of case 3 (no L-D) 
have the largest deviation from the exact solution. It 
means the large deflection effect becomes significant 
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Table 1. Initial shape of the unsymmetric cable-stayed bridge 

Element forces 
Reference Determined Bending moments 

configuration configuration (kips-ft) 
Node Element Axial force 

no. X Y X Y no. (kips) Left Right 

1 0.00 0.00 -0.02 0.00 3-5 0.100073 x IO5 - 

2 100.00 0.00 99.98 0.87 5-10 0.120404 x lo5 
3 200.00 0.00 199.98 0.02 l-2 0.387060 x 10’ -0.727596 x IO-” -0.443965 x IO’ 
4 300.00 
5 400.00 
6 400.00 
7 400.00 
8 400.00 
9 450.00 

10 500.00 
11 550.00 
12 600.00 

0.00 299.98 
-80.00 399.97 
-40.00 399.92 

0.00 399.97 
8.00 400.00 
0.00 449.97 
0.00 499.97 
0.00 549.97 
0.00 599.97 

0.40 
- 80.00 
-40.00 

0.00 

-::: 
0.00 
0.07 
0.00 

2-3 
34 
4-7 
7-9 
9-10 

10-l 1 
1 l-12 
6-5 
7-8 
8-7 

0.987206 x 10’ 0.443965 x 10’ 
-0.928752 x lo4 -0.712011 x lo5 
-0.928863 x lo4 0.284819 x IO5 
-0.940245 x lo4 -0.306044 x 10’ 
-0.940220 x lo=’ -0.172015 x IO4 

0.766528 x 10’ -0.121793 x 10’ 
0.408693 x 10’ 0.139103 x 10’ 

-0.112387 x IO5 -0.496437 x IO4 
-0.112389 x IO5 -0.883366 x lo4 
-0.136616 x IO’ 0.685216 x IO-’ 

0.712011 x lo5 
-0.284819 x lo5 

0.390914 x to5 
0.172015 x IO4 
0.121793 x IO5 

-0.139103 x 10’ 
0.139662 x lo-’ 
0.943749 x lo-’ 
0.496347 x lo4 
0.346609 x IO’ 
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Table 2. Vertical dtsplacement at node 2 m shape findmg of unsymmetric cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 
- 

DISPL. DISPL. DISPL. DISPL. DISPL. 
CEI (ft) CEI (ft) CEI (ft) CEI (ft) CEI (ft) 

1 4 3 419 4 2.521 4 3.419 4 3.414 1 2.528 
2 5 1.270 5 1.126 4 1.269 5 1.275 1 1.138 
3 5 0.926 5 0.903 5 0.924 6 0.930 I 0.913 
4 5 0.872 5 0 868 5 0.869 6 0.875 1 0.877 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration 

NSI 

1 
2 
3 
4 

Table 3. Vertical displacement at node 3 m shape findmg of unsymmetric cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 
_ 

DISPL. DISPL. DISPL. DISPL. DISPL 
CEI (ft) CEI (ft) CEI (ft) CEI (ft) CEI (ft) 

4 3.45 1 4 2.256 4 3.451 4 3.446 1 2 238 
5 0.557 5 0.363 4 0.558 5 0.565 1 0.363 
5 0.091 5 0.060 5 0.092 6 0.097 1 0.059 
5 0.018 5 0.013 5 0.018 6 0.022 I 0.0095 

NSI = no. of shape iteration, CEI = cycles of eqmhbrium iteration 

Table 4. Vertical displacement at node 4 m shape finding of unsymmetrtc cable-stayed bridge 

NSI 

Exact sol. No sag No B-C No L-D Linear 

DISPL. DISPL. DISPL. DISPL. DISPL. 
CEI (ft) CEI (ft) CEI (ft) CEI (ft) CEI (ft) 

1 4 2.1881 4 1.5767 4 2.1881 
2 5 0.6846 5 0.5817 4 0.6803 
3 5 0.4383 5 0.4220 5 0.4354 
4 5 0.3995 5 0.3970 5 0.3963 

NSI = no. of shape iteration, CEI = cycles of eqmlibrium iteration. 

4 2.1854 1 1.5329 
5 0.6885 1 0.5451 
6 0.4412 1 0.3854 
6 0.4019 1 0.3595 

Table 5. Cable force of element 3-5 in shaoe findmg of unsymmetric cable-stayed bridge 

NSI 

Exact sol. No sag No B-C No L-D Linear 

Force Force Force Force Force 
CEI (kips) CEI (kips) CEI (kips) CEI (ktps) CEI (kips) 

1 4 7700 4 8527 4 7700 
2 5 9654 5 9782 4 9657 
3 5 9959 5 9980 5 9966 
4 5 10007 5 10010 5 10015 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

4 7674 1 8508 
5 9645 1 9776 
6 9955 1 9982 
6 10004 1 10015 

NSI 

1 
2 
3 
4 

Table 6. Cable force of element 5-10 in shape finding of unsymmetric cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

Force Force Force Force Force 
CEI (kips) CEI (kips) CEI (kips) CEI (kips) CEI (kips) 

4 9381 4 10300 4 9381 4 9358 1 10262 
5 11627 5 11776 4 11629 5 11615 1 11760 
5 11984 5 12008 5 11992 6 11979 1 12003 
5 12040 5 12044 5 12050 6 12037 1 12043 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 
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Fig. 5. Static deflection of unsymmetric cable-stayed bridge. 
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girder, tower E=4.320,000 ksf 
cable E=4,320.000 ksf 

girder 

tower 

cable 

dead load 

1=131.0 it’ : A=3.44 rt” 
1=24.4, 40.0, 50.0 it’ (from top to buttom) 
A=2.16, 2.45, 2.90 ft” 

exterior : A=0.452 fta 
interior : A=0.174 ft= 

girder w=6.0 kips/ft 
cable : exterior w=O.Z21 kips/ft 

interior w=0.065 kips/ft 

Fig. 6. Symmetric harp cable-stayed bridge. 

in static deflection analysis. Only in the cable element 
between node 2 and 3, do the cable sag and 
beam-column effects become larger than the large 
deflection effect, since the cable force decreases when 
the load increases. There is no great difference in the 
cable forces of elements 8-9 and 7-6 in all cases. 

6.3. Symmetric radiating cable-stayed bridge 

The symmetric radiating cable-stayed bridge is 
taken from Ref. [l I]. Its geometry is shown in Fig. 9. 
Its geometric and physical properties have the same 
values as those of the previous example. The initial 
shape of the symmetrical radiating cable-stayed 
bridge is also determined by the previously described 
algorithm and by taking all the nonlinearities into 
account. The shape iteration control points are 
chosen at the nodes 4,5 and 10. For this example four 
cycles of shape iteration are needed. In each shape 
iteration, 4-5 cycles of equilibrium iteration are 
needed. Similarly, the convergence in this example is 
better than that made in Ref. [lo], since the axial 
forces of all members are used as the initial element 
force for the next shape iteration. The final geometric 
configuration and the element forces of the initial 
shape of the symmetric radiating cable-stayed bridge 
are listed in Table 13. The cable forces converge to 
1024, 1757 and 2543 kips in the cable elements 
between the nodes 9-4, 9-5 and 9-10. The vertical 
deflections at node 4, 5 and 10 converge to -0.0017, 
-0.0440 and -0.0653 ft, respectively. The vertical 
displacement at node 11 (mid-span) is 0.172 ft. The 
maximum positive and negative moment have the 
value 15,791 and - 16,985 kips-ft at node 11 and 17, 
respectively. 

For the initial shape analysis performed with differ- 
ent approximations four shape iterations are required 
in case 2 and case 3, but only three shape iterations 

in case 1 and case 4. The nodal displacements and 
cable forces are listed in Tables 14-18 and plotted in 
Fig. 10. Only at the initial stage of shape finding the 
cable sag effect induces large displacement deviation 
from the exact solution, but the results of different 
cases have good agreement at final stage (NSI = 4) of 
shape finding. Similarly, the cable forces of the 
approximate solutions have almost the same value of 
the exact solution and only a little difference (about 
3 to 10%) exists in case 4 (linear) exact solution. 

For the static deflection analysis the load- 
displacement curves and the load-element force 
curves of each case are also plotted in Fig. Il. 
Similarly the large deflection effect exhibits most 
significantly. The cable sag and beam-column effects 
become significant when the cable force discreases, 
e.g. cable force in element 2-9. There is no great 
difference in the cable forces of element 8-9 and 7-9 
in all cases. 

7. CONCLUSIONS 

A finite element computation procedure for the 
initial shape analysis and the static deflection analysis 
of cable-stayed bridges is presented in the study. The 
nonlinearities induced by cable sag, beam-column 
and large displacement effects have been taken into 
account in the analysis. Parametric studies for inves- 
tigating the individual influence of such sources of 
nonlinearity on the analysis of cable-stayed bridges 
have been carried out in details. From numerical 
results some conclusions can be made as follows. 

I. For initial shape analysis of cable-stayed bridges 

(1) At the initial stage of shape finding compu- 
tation the cable-stays have a low tension force, hence, 
evident displacement deviations from the exact sol- 
ution appear when the cable sag effect is neglected. 
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Table 8. Vertical displacement at node 4 in shape finding of harp cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

DISPL. DISPL. DISPL. DISPL. DISPL. 
NSI CEI (ftl CEI (ftl CEI (ft) CEI (ft) CEI (ft) 

1 6 1.568 5 0.993 6 I.568 5 1.564 1 0.992 
2 5 0.053 6 0.023 5 0.054 5 0.055 1 0.037 
3 7 -0.071 - 7 -0.070 5 -0.070 1 

NSI = no. of shape iteration, CEI = cycles of equihbrium iteration, 

Table 9. Vertical displacement at node 11 m shape finding of harp cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

DISPL. DISPL. DISPL. DISPL. DISPL. 
NSI CEI (ftl CEI (ftl CEI (ftl CEI (ftl CEI (ft) 

1 6 5.335 5 3 001 6 5.335 5 5.322 1 3.006 
2 5 0.472 6 0.137 5 0 472 5 0.478 1 0.!50 
4 7 0.116 7 0.116 5 0.117 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

Table 10. Cable force of element 889 m shape findmg of harp cable-stayed bridge 

NSI 

1 
2 
4 

Exact sol. No sag No B-C No L-D Linear 

Force Force Force Force Force 
CEI (lops) CEI (hips) CEI (hips) CEI (hips) CEI (kipsl 

6 2335 5 2694 6 2335 5 2331 1 2697 
5 2517 6 2700 5 2517 5 2517 1 2708 
7 2512 7 2512 5 2512 

NSI = no. of shape iteration, CEI = cycles of eqmhbrium iteration. 

NSI 

Table 11. Cable force of element 776 in shape finding of harp cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

Force Force Force Force Force 
CEI (l&s) CEI tkipsl CEI tkips) CEI tkipsl CEI fkiusl 

1 6 2220 5 1891 6 2220 
2 5 2372 6 2100 5 2372 
4 7 2403 7 2403 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

5 2217 1 1886 
5 2371 1 2093 
5 2402 

Table 12. Cable force of element 2-3 in shape finding of harp cable-stayed bridge 

Exact sol. No sag No B-C 

Force Force Force 
NSI CEI (hips) CEI (hips) CEI (kips) 

1 6 1821 5 1731 6 1821 
2 5 1987 6 1999 5 1987 
4 7 2046 7 2045 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

No L-D Linear 

Force Force 
CEI (kpsl CEI (hips) 

5 1819 1 1728 
5 1987 1 1992 
5 2046 - - 
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t---6 8 150 ft-++-6 @ 150 ft--+ 

girder, tower E=4,320.000 kaf 
cable E=4,320.000 kef 

girder 

tower 

1=131.0 it’ : A=3.44 ft= 

1=24.4, 40.0, 50.0 ft’ (from top to buttom) 

A=2.18. 2.45, 2.90 it” 

cable exterior : A=0.452 ft” 

interior : A=0.174 ft” 

dead load girder w=6.0 kipe/ft 

cable : exterior w=O.221 kips/ft 
interior w=O.O65 kips/ft 

Fig. 9. Symmetric radiating cable-stayed bridge. 

NSI 

1 
2 
3 
4 

Table 14. Vertical displacement at node 4 m shape finding of radiating cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

DISPL. DISPL. DISPL. DISPL. DISPL. 
CEI (ft) CEI (ft) CEI (ft) CEI (ftl CEI (ft) 

X IO-3 X IO-) X1o-3 x 10-j X 10-j 

5 961.18 5 626.63 5 961.18 4 960.13 I 625.21 
5 -4.12 5 -0.33 5 -3.93 4 -2.81 I 2.74 
5 - 1.86 4 -1.15 5 -1.87 4 -1.85 1 - 1.19 
5 - 1.72 5 -1.82 4 -1.78 - 

NSI = no. of shape iteration, CEI = cycles of equihbrium iteration. 

Table 15. Vertical displacement at node 11 in shape finding of radtating cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

DISPL. DISPL. DISPL. DISPL. DISPL. 
CEI (ft) CEI (ft) CEI (ftl CEI (ftl CEI (ftl NSI 

1 4 4.441 5 2.676 5 4.441 
2 5 0.656 5 0.302 5 0.655 
3 5 0.261 4 0.121 5 0.262 
4 5 0.172 - 5 0.172 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

4 4.437 1 2.665 
4 0.660 1 0.312 
4 0.262 1 0.122 
4 0.172 - 

Table 16. Cable force of element 8-9 in shape finding of radiating cable-stayed bridge 

Exact sol. No sag No B-C No L-D Linear 

NSI CEI 

1 5 
2 5 
3 5 
4 5 

Force 

@ips) 

2103 
2337 
2392 
2416 

CEI 

5 
5 
4 

- 

Force 

fkipsl 

2421 
2499 
2495 

- 

CEI 

5 
5 
5 
5 

Force 

&ips) 

2103 
2336 
2392 
2415 

CEI 

4 
4 
4 
4 

Force 

(kips) 

2100 
2336 
2392 
2416 

CEI 

1 
1 
1 

- 

Force 

(hips) 

2416 
2498 
2496 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 
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NODE 4 

Y5 1 \ -EXACT SOL. 
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-NO S.40 

D 0.5 
AehsNO B-C 

ii 2222 FIziiD 

- EXACT SOL 
-No UC 
~NO B-C 
-NO L-D 
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NUMBER :F SHAPE A.4TION WI) 
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5- e+e+. EXACT SOL 
WND SAG 
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NUMBER b SHAPE &RATION &f) 
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0.5 1.0 1.5 2.0 2.5 : 
HORIZONTAL DISPLACEMENT (It) 
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- EXACT SOL 
-NO SAG 
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Fig. 10. Shape finding of symmetric radiating cable-stayed Fig. 1 I. Static deflection of symmetric radiating cable- 
bridge. stayed bridge. 
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Table 17. Cable force of element 7-9 in shape finding of radiating cable-stayed bridge 

259 

Exact sol. No sag No B-C 

Force Force Force 

NSI CEI (hips) CEI (hips) CEI (hips) 

1 5 1858 5 1606 5 1858 
2 5 1883 5 1689 5 1883 
3 5 1868 4 1722 5 1868 
4 5 1859 5 1859 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration. 

No L-D Linear 

Force Force 
CEI (hips) CEI (hips) 

4 1856 1 1605 
4 1882 1 1687 
4 1867 1 1721 
4 1858 - 

Table 18. Cable force of element 2-9 in shape finding of radiating cable-stayed bridge 

NSI 

1 
2 
3 
4 

Exact sol. No sag No B-C No L-D Linear 

Force Force Force Force Force 
CEI @ins) CEI (kips) CEI @ins) CEI @ins) CEI @ins) 

5 1192 5 1191 5 1192 4 1192 1 1199 
5 1139 5 1201 5 1140 4 1139 1 1203 
5 1098 4 1177 5 1098 4 1098 1 1179 
5 1078 - 5 1079 4 1079 

NSI = no. of shape iteration, CEI = cycles of equilibrium iteration 

Since there is a low tension force in the cable-stays, 
the beam-column effect is also insignificant at the 
initial stage of shape finding. At the final stage of 
shape finding all approximate solutions converge to 
the exact solution and have quite small displacement 
deviations. That means all the three nonlinearities 
have less influence on the final geometry of the initial 
shape. 

(2) The beamcolumn and the large deflection 
effects have almost no influence on the final cable 
forces in the initial shape. When the cable sag effect 
is neglected, about 10% difference in cable forces may 
appear. Therefore, for cable forces in the initial shape 
analysis, the cable sag effect is significant, and the 
beamxolumn and large deflection effects become 
insignificant. 

(3) A pure linear analysis provides an acceptable 
result for shape finding computation in which the 
deviation in deflection is small and the difference in 
cable forces with respect to the exact solution is about 
2-10% only. The linear analysis needs less shape 
iterations and no equilibrium iteration. A large 
amount of computation effort can be saved for 
shape finding. From the point of view of engineering 
practices, the linear analysis would be highly rec- 
ommended here for the initial shape analysis of 
cable-stayed bridges. 

(4) During the shape iteration the computation 
will converge slowly and sometimes becomes difficult 
to converge when only the axial force of cable-stays 
determined in the previous step is used as the initial 
element force for the next shape iteration. A better 
convergence could be achieved when the axial forces 
of all members (cable stays, towers and girders) are 
taken as the initial element force for the computation 
of the next shape iteration. 

II. For static dejection analysis of cable-stayed 
bridges 

(1) From the numerical results it is evidently seen 
that the large deflection effect is the most significant 
one and has a large influence on the static deflection 
behavior of cable-stayed bridges. When the large 
deflection effect is neglected in the deflection analysis 
an evident deviation from the exact solution will 
appear and the computation will sometimes become 
difficult to converge. 

(2) The second most significant effect is the beam- 
column effect. Since large axial forces exist in the 
members of towers and girders under the dead load 
and the live load action, the beamcolumn effect 
should not be neglected in the static deflection 
analysis. 

(3) The cable-sag effect becomes the least signifi- 
cant one for the static deflection analysis, since large 
tension forces already exist in the cable-stays under 
dead load action and their sag becomes quite small. 
Therefore, only very small change will appear in the 
deflection of the cable-stayed bridges when the cable- 
sag effect is neglected, but attention must be paid for 
that negelecting cable-sag effect will induce error in 
the determination of the element force of the local 
cable-stays when the tension force in local cable-stays 
decreases during the deflection process. 

(4) Since large axial forces exist in all the structural 
members and large deflections occur, a linear analysis 
for the static deflection analysis of cable-stayed 
bridges is meaningless and not acceptable. 
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